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Abstract

Additive Runge-Kutta (ARK) methods are investigated for application to the spatially discretized
one-dimensional convection-di�usion-reaction (CDR) equations. First, accuracy, stability, conservation,
and dense-output are considered for the general case when N di�erent Runge-Kutta methods are
grouped into a single composite method. Then, implicit-explicit, N = 2, additive Runge-Kutta (ARK2)
methods from third- to �fth-order are presented that allow for integration of sti� terms by an L-stable,
sti�y-accurate explicit, singly diagonally implicit Runge-Kutta (ESDIRK) method while the nonsti�
terms are integrated with a traditional explicit Runge-Kutta method (ERK). Coupling error terms are
of equal order to those of the elemental methods. Derived ARK2 methods have vanishing stability
functions for very large values of the sti� scaled eigenvalue, z[I] ! �1, and retain high stability
e�ciency in the absence of sti�ness, z[I ] ! 0. Extrapolation-type stage-value predictors are provided
based on dense-output formulae. Optimized methods minimize both leading order ARK2 error terms
and Butcher coe�cient magnitudes as well as maximize conservation properties. Numerical tests of the
new schemes on a CDR problem show negligible sti�ness leakage and near classical order convergence
rates. However, tests on three simple singular-perturbation problems reveal generally predictable order
reduction. Error control is best managed with a PID-controller. While results for the �fth-order
method are disappointing, both the new third- and fourth-order methods are at least as e�cient as
existing ARK2 methods while o�ering error control and stage-value predictors.
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1. Introduction

It is oftentimes useful to consider the compressible Navier-Stokes equations (NSE) as evolution
equations with several driving forces, each having somewhat di�erent characteristics. Typically, one
distinguishes among terms such as convection, di�usion, and reaction. As such, one often considers the
more tractable convection-di�usion-reaction (CDR) equations as a prologue to the full compressible
NSE.34 In the search for ever more e�cient integrators, it is intuitively appealing to seek individual
integration methods that are ideally suited for speci�c parts of the governing equations. The individual
methods are then rolled into a single composite method that, ideally, would be more e�cient than any
individual method applied to the full computation. To accomplish this, one may consider partitioned
methods. Schemes constructed to take advantage of termwise partitioning of the CDR for integra-
tion purposes may be called additive methods.48 Partitioning of the discretized form of the equations
may also be performed on an equationwise or pointwise basis.24 There are many di�erent partitioning
strategies.70 Runge-Kutta methods, with their extensive theoretical foundation, allow for straightfor-
ward design and construction of stable, high-order, partitioned methods composed of arbitrary numbers
of elemental Runge-Kutta schemes. In addition, they also allow for the direct control of partitioning
(splitting or coupling) errors.46 Direct numerical simulation (DNS) and large-eddy simulation (LES) of

uid phenomena, with their relatively strict error tolerances, are prime candidates for such methods.
The need for these strategies is by no means limited to Navier-Stokes applications.7, 18, 54, 67

From a termwise point of view, a linearization of one-dimensional CDR equations can provide
insight into the distinguishing characteristics of each term. Upon method-of-lines discretization using
high-order, �nite-di�erence techniques, the CDR equations may be written as a system of ordinary
di�erential equations (ODEs) and analyzed with

dU

dt
= �CU + �DU + �RU; (1)

where zC = �C(�t), zD = �D(�t), zR = �R(�t), and (�t) is the time step. The discretized convection
term contributes scaled eigenvalues, zC , that are predominately imaginary while the di�usion terms
have predominately real scaled eigenvalues, zD. Reaction rate eigenvalues are mostly real and may give
rise to relatively large scaled eigenvalues, zR. Based on this knowledge, one might seek to construct a
new method based on two separate methods: one optimized to smaller eigenvalues of the convection and
di�usion terms and one that is capable of dealing with very large reaction-rate eigenvalues. It should
be remarked that because of the high sound speeds introduced by the compressible equations, jzC j is
generally larger than jzDj, e.g., in the DNS of a hypersonic boundary layer resolved down to y+ = 1.
Incompressible 
ows, governed by index-2 di�erential algebraic equations, generally have jzDj > jzC j.

If the stability domain of the integrator contains all values of zC , zD, and zR, then stable integration
can be done. For accuracy purposes, the integration must proceed no faster than the fastest relevant
physical processes contained within the governing equations. A situation may arise, however, where
stable integration of the discretized governing equations can only proceed at a time scale substantially
faster than any physically relevant time scale of the continuum-based compressible equations. This may
render a numerical method unacceptably ine�cient. It may occur in regions of intense grid clustering or
while using sti� chemistry, but may be caused by other issues like interface boundary conditions within
a multidomain formulation. There are two possible strategies to obtaining a solution at a reasonable
cost when this occurs: change the governing equations and hence their characteristic time scales or
change the numerical method. We choose the latter.

Partitioned Runge-Kutta methods may be designed to allow for the partitioning of equations by
term, gridpoint, or equation. Implicit-explicit (IMEX) partitioned methods developed to date for
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�rst order ODEs have usually considered a partitioning based on terms. They have combined ex-
plicit Runge-Kutta (ERK) schemes with variations on either the diagonally implicit Runge-Kutta
(DIRK)5, 10, 17, 19, 31, 51, 61, 74, 75, 76, 77 or Rosenbrock family of methods.12, 39, 52, 57, 61, 74, 75, 76, 77 In
this paper, methods are derived using sti�y-accurate, explicit, singly diagonally implicit Runge-Kutta
(ESDIRK) schemes for their stability properties and higher stage-order. Of the methods currently
available in the literature, some exhibit lower-order coupling errors, coupling stability problems, no
error control, and poor ERK or DIRK/Rosenbrock stability properties. The new schemes endeavor to
address all of these shortcomings without falling prey to new ones.

A multistep4, 16, 35 approach to IMEX schemes is also possible. Higher-order SBDF methods given
by Ascher et al.,4 based on BDF methods for the implicit portion, are of the form

U (n+1) = �
k�1X
j=0

�jU
(n�j) + (�t)�k

k�1X
j=0

 
(�1)jk!

(k � j � 1)!(j + 1)!

!
F
(n�j)
explicit + (�t)�kF

(n+1)
implicit;

where �j and �k are the values for the k-step, order-k, BDF methods.45 These methods may be quite
e�ective for equations whose sti� terms give rise to predominately real eigenvalues. At third-order and
above the BDF methods are only L(�)-stable; they lack A-stability but still have a vanishing stability
function for extremely sti� eigenvalues. Transient events like chemical ignition may be less appropriate
for SBDF methods because they lack stepsize adjustment.

The goal of this paper is to provide complete methods for solving CDR equations using additive
Runge-Kutta methods. By this, it is meant that beyond having good accuracy and stability properties,
there are high quality embedded methods, error controllers, dense output, stage-value predictors and
implementation guidance. This is done in a two-fold manner. First, a general overview is given
of the coupling of N di�erent Runge-Kutta methods for �rst-order ODEs whose right hand side is
the summation of N terms: N-additive Runge-Kutta methods (ARKN). Second, matters are then
specialized to the case of N = 2 : additive Runge-Kutta (ARK2) methods using an implicit method
that allows accurate and stable integration of the sti� terms while either integrating the nonsti� terms
at the linear stability of the explicit method or integrating the entire method at some chosen error
tolerance.

We do not consider the topics of storage reduction, contractivity, dispersion and dissipation, reg-
ularity, or boundary error. Sections 1 and 2 will provide an introduction to ARKN methods and the
motivation for their application to Navier-Stokes-type problems. Specialization of additive methods to
ERK-ESDIRK combinations will be reviewed in section 3. Third-, fourth-, and �fth-order schemes will
be considered in sections 4, 5, and 6. Testing of the ARK2 schemes on a one-dimensional, convection-
di�usion-reaction test problem and three, two-equation, singular-perturbation problems is discussed in
section 7. Merits of the additive schemes are discussed in section 8 and comparisons are made with
existing Runge-Kutta and multistep IMEX methods. In section 9, conclusions are drawn as to utility
of the various schemes. Appropriate appendices are also included. All new methods presented in this
study were solved completely using Mathematica.71, 72 Coe�cients of the new schemes are provided to
at least 25 digits of accuracy.

2. N-Additive Runge-Kutta Methods

2.1. General

Following Ara�ujo et al.,3 ARKN methods are used to solve equations of the form

dU

dt
= F (U) =

NX
�=1

F [�](U); (2)
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where F (U) has been additively composed of N terms. They are applied as

U (i) = U (n) + (�t)
NX
�=1

sX
j=1

a
[�]
ij F

[�](U (j)); (3)

U (n+1) = U (n) + (�t)
NX
�=1

sX
i=1

b
[�]
i F [�](U (i)); Û (n+1) = U (n) + (�t)

NX
�=1

sX
i=1

b̂
[�]
i F [�](U (i)); (4)

where each of theN terms are integrated by its own s-stage Runge-Kutta method. Also, U (n) = U(t(n)),

U (i) = U
�
t(n) + ci�t

�
is the value of the U -vector on the ith-stage, and U (n+1) = U(t(n) + �t). Both

U (n) and U (n+1) are of classical order q. The U -vector associated with the embedded scheme, Û (n+1),

is of order p. Each of the respective Butcher coe�cients a
[�]
ij , b

[�]
i , b̂

[�]
i , and c

[�]
i , � = 1; 2; � � � ; N are

constrained, at a minimum, by certain order of accuracy and stability considerations.

2.1.1 Order Conditions

Order-of-accuracy conditions for ARKN methods may be derived via N-trees.3 These N-trees re-
semble the traditional Butcher 1-trees8, 26, 27 but each node may be any one of N varieties or colors.
Expressions for the equations of condition associated with the qth-order N-trees are of the form

�
(q)
k[n] =

1

�
�
(q)
k[n] �

�

q!
=

1

�

�
�
(q)
k[n] �

1




�
; where �

(q)
k[n] =

sX
i

bi�
(q)
i;k[n]; (5)

where �
(q)
k[n] and �

(q)
i;k[n] are scalar sums of Butcher coe�cient products and 1 � n � N q is used to

distinguish between the many possible color variations of the kth 1-tree of order q. Both � and � are
color dependent; i.e., for a given 1-tree, the many corresponding N-trees may have di�erent values of
� and � depending on the details of the node colorings. Tree density, 
, is color independent and

consequently so is the product of � and �, �� = q!=
. Order conditions �
(3)
2 , �

(4)
2;4 , �

(5)
6;7;9, �

(6)
9;10;16;17;18;20

given in appendix A, never exhibit color dependence. When an equation of condition, �
(q)
k[n], is made to

vanish, color dependence is immaterial because �
(q)
k[n] = 1=
. For equations of condition that are not

made to vanish, color dependence must be taken into consideration to accurately assess the leading
order error terms. Order conditions for partitioned Runge-Kutta methods have also been derived by
Jackiewicz and Vermiglio37 following an approach of Albrecht.

2.1.2. Coupling Conditions

Aside from satisfying the order conditions speci�c to each of the elemental methods of the ARKN,
one must also satisfy various coupling conditions. One may write the total number of order conditions

for a general ARKN associated with each particular root node coloring, �
[N ]
i , using the expression24, 26, 62

1X
i=1

�
[N ]
i x(i�1) =

1Y
i=1

�
1� xi

�
�N�

[N ]
i

: (6)

At order i = f1; 2; 3; 4; 5; 6; � � �g , a general ARKN method has a total of N�
[N ]
i order conditions, where

�
[1]
i = f1; 1; 2; 4; 9; 20; � � �g, �[2]i = f1; 2; 7; 26; 107; 458; � � �g, �[3]i = f1; 3; 15; 82; 495; 3144; � � �g, �[4]i =

f1; 4; 26; 188; 1499; 12628; � � �g, and �
[5]
i = f1; 5; 40; 360; 3570; 37476; � � �g. Some of these, N�

[1]
i , are

order conditions of the elemental methods which compose the ARKN. This implies that N(�
[N ]
i ��

[1]
i )
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of the order conditions are composed of portions of di�erent elemental methods. These are coupling
conditions. As both order of accuracy and N increase, their numbers grow explosively. Table 1 shows
their numbers for orders up to six and for each 1-tree listed in appendix A with which the coupling
conditions are associated. Also contained in the table is the type of order condition: quadrature(Q),
subquadrature(SQ), extended subquadrature(ESQ), and nonlinear(NL).68 It should be noted that there
are no more than N � s(s+1) independent Butcher coe�cients to satisfy all of these order conditions.

Obviously, without some type of simplifying assumptions, even fourth-order methods appear rather
hopeless. The simplist remedy is to require all root or canopy nodes of the N-trees to be the same, or

e�ectively colorless. In terms of Butcher coe�cients, this is done by setting b
[�]
i = b

[�]
i (root nodes) or

c
[�]
i = c

[�]
i (canopy nodes), �; � = 1; 2; � � � ; N . Tables 2 and 3 show the results of these simpli�cations.

Since there is always only one root node for any N-tree yet there may be many canopy nodes, assuming

c
[�]
i = c

[�]
i generally reduces the number of coupling conditions further than b

[�]
i = b

[�]
i . Table 4 shows

that matters become much more tractable when all root and canopy nodes are made equal. It may

also be seen from this that as long as b
[�]
i = b

[�]
i and c

[�]
i = c

[�]
i , an arbitrary number of independent

third-order methods having the same number of stages may be coupled together with no associated

coupling error. Tables 2 and 3 show that selecting b
[�]
i = b

[�]
i or c

[�]
i = c

[�]
i allows second-order error-free

coupling of an arbitrary number of schemes. Choosing neither of these assumptions reduces error-free
coupling, as seen from table 1, to �rst-order.

2.1.3. Error

Error in an elemental qth-order Runge-Kutta scheme contained within an ARKN method may be
quanti�ed in a general way by taking the L2 principal error norm,

41

A(q+1) = k� (q+1)k2 =

vuuut�
[1]
q+1X
k=1

�
�
(q+1)
k

�2
; (7)

where �
(q+1)
j are the �

[1]
q+1 error coe�cients associated with order of accuracy q + 1. For embedded

schemes where p = q � 1, additional de�nitions are useful such as

�̂
(p)
k =

1

�

sX
i

b̂i�
(p)
i;k �

�

p!
; Â(p+1) = k�̂ (p+1)k2; (8)

B(p+2) =
Â(p+2)

Â(p+1)
; C(p+2) =

k�̂ (p+2) � � (p+2)k2
Â(p+1)

; E(p+2) =
A(p+2)

Â(p+1)
; (9)

where the superscript circum
ex denotes the values with respect to the embedded method. In the case
of ARKN methods, we generalize the traditional expression for A(q+1) to

A(q+1) = k� (q+1)k2 =

vuuut�
[1]
q+1X
k=1

nN;k;(q+1)X
n=1

�
�
(q+1)
k[n]

�2
; (10)

where we have used nN;k;(q+1) to denote the total number of ARKN order conditions arising from all

variations of the kth 1-tree at order (q + 1). For example, for general N-trees with N = 5, q = 5, and
k = 15, table 1 gives n5;15;6 = 4370+ 5 = 4375. If root and/or canopy nodes have been set equal, then
nN;k;(q+1) is given in table 2, 3, or 4, whichever is appropriate. Since there is generally no reason to
assume any particular order condition is more important than another, it is prudent to consider them

5



Table 1: General ARKN Coupling Conditions

Eqn. Type Gen. Gen. Gen. Gen. Gen.
of of

cond. Cond. 2-Trees 3-Trees 4-Trees 5-Trees N-Trees

�
(1)
1

Q 0 0 0 0 0

�
(2)
1

Q 2 6 12 20 N(N � 1)

�
(3)
1

Q 4 15 36 70 N2(N + 1)=2!�N

�
(3)
2

SQ 6 24 60 120 N3 �N

q = 3 10 39 96 190 N(N � 1)(3N + 4)=2!
q � 3 12 45 108 210 N(N � 1)(3N + 6)=2!

�
(4)
1

Q 6 27 76 345 N2(N + 1)(N + 2)=3!�N

�
(4)
2

ESQ 14 78 252 620 N4 �N

�
(4)
3

SQ 10 51 156 370 N3(N + 1)=2!�N

�
(4)
4

SQ 14 78 252 620 N4 �N

q = 4 44 234 736 1780 N(N � 1)(16N2 + 22N + 24)=3!

q � 4 56 279 884 1990 N(N � 1)(16N2 + 31N + 42)=3!

�
(5)
1

Q 8 42 136 345 N2(N + 1)(N + 2)(N + 3)=4!�N

�
(5)
2

ESQ 22 159 636 1870 N4(N + 1)=2!�N

�
(5)
3

NL 18 132 540 1620 N3(N2 + 1)=2!�N

�
(5)
4

ESQ 22 159 636 1870 N4(N + 1)=2!�N

�
(5)
5

SQ 14 87 316 870 N3(N + 1)(N + 2)=3!�N

�
(5)
6

ESQ 30 240 1020 3120 N5 �N

�
(5)
7

ESQ 30 240 1020 3120 N5 �N

�
(5)
8

SQ 22 159 636 1870 N4(N + 1)=2!�N

�
(5)
9

SQ 30 240 1020 3120 N5 �N

q = 5 196 1458 5960 17805 N(N � 1)(125N3 + 179N2 + 210N + 216)=4!

q � 5 252 1737 6804 19795 N(N � 1)(125N3 + 243N2 + 334N + 384)=4!

�
(6)
1

Q 10 60 220 625 N2(N + 1)(N + 2)(N + 3)(N + 4)=5!� N

�
(6)
2

ESQ 30 267 1276 4370 N4(N + 1)(N + 2)=3!�N

�
(6)
3

NL 38 402 2172 8120 N4(N2 + 1)=2!�N

�
(6)
4

ESQ 34 321 1596 5620 N2(N(N + 1)=2!)2 �N

�
(6)
5

NL 46 483 2556 9370 N5(N + 1)=2!�N

�
(6)
6

ESQ 30 267 1276 4370 N4(N + 1)(N + 2)=3!�N

�
(6)
7

SQ 18 132 556 1745 N3(N + 1)(N + 2)(N + 3)=4!�N

�
(6)
8

ESQ 46 483 2556 9370 N5(N + 1)=2!�N

�
(6)
9

NL 62 726 4092 15620 N6 �N

�
(6)
10

ESQ 62 726 4092 15620 N6 �N

�
(6)
11

ESQ 46 483 2556 9370 N5(N + 1)=2!�N

�
(6)
12

NL 38 402 2172 8120 N4(N2 + 1)=2!�N

�
(6)
13

ESQ 46 483 2556 9370 N5(N + 1)=2!�N

�
(6)
14

ESQ 46 483 2556 9370 N5(N + 1)=2!�N

�
(6)
15

SQ 30 267 1276 4370 N4(N + 1)(N + 2)=3!�N

�
(6)
16

ESQ 62 726 4092 15620 N6 �N

�
(6)
17

ESQ 62 726 4092 15620 N6 �N

�
(6)
18

ESQ 62 726 4092 15620 N6 �N

�
(6)
19

SQ 46 483 2556 9370 N5(N + 1)=2!�N

�
(6)
20

SQ 62 726 4092 15620 N6 �N

q = 6 876 9372 50432 187280 N(N � 1)(1296N4 + 1936N3 + 2296N2 + 2376N + 2400)=5!

q � 6 1128 11109 57236 207075 N(N � 1)(1296N4 + 2561N3 + 3511N2 + 4046N + 4320)=5!
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Table 2: ARKN Coupling Conditions with b
[�]
i = b

[�]
i

Eqn. of Type b
[�]
i

= b
[�]
i

b
[�]
i

= b
[�]
i

b
[�]
i

= b
[�]
i

b
[�]
i

= b
[�]
i

b
[�]
i

= b
[�]
i

cond. Cond. 2-Trees 3-Trees 4-Trees 5-Trees N-Trees

�
(1)
1

Q 0 0 0 0 0

�
(2)
1

Q 0 0 0 0 0

�
(3)
1

Q 1 3 6 10 N(N + 1)=2!�N

�
(3)
2

SQ 2 6 12 20 N(N � 1)

q = 3 3 9 18 30 3N(N � 1)=2!

�
(4)
1

Q 2 7 16 30 N(N + 1)(N + 2)=3!�N

�
(4)
2

ESQ 6 24 60 120 N3 �N

�
(4)
3

SQ 4 15 36 70 N2(N + 1)=2!�N

�
(4)
4

SQ 6 24 60 120 N3 �N

q = 4 18 70 172 340 N(N � 1)(16N + 22)=3!
q � 4 21 79 190 370 N(N � 1)(16N + 31)=3!

�
(5)
1

Q 3 12 31 65 N(N + 1)(N + 2)(N + 3)=4! �N

�
(5)
2

ESQ 10 51 156 370 N3(N + 1)=2!�N

�
(5)
3

NL 8 42 132 320 N2(N2 + 1)=2!�N

�
(5)
4

ESQ 10 51 156 370 N3(N + 1)=2!�N

�
(5)
5

SQ 6 27 76 170 N2(N + 1)(N + 2)=3!� N

�
(5)
6

ESQ 14 78 252 620 N4 �N

�
(5)
7

ESQ 14 78 252 620 N4 �N

�
(5)
8

SQ 10 51 156 370 N3(N + 1)=2!�N

�
(5)
9

SQ 14 78 252 620 N4 �N

q = 5 89 468 1463 3525 N(N � 1)(125N2 + 179N + 210)=4!

q � 5 110 547 1653 3895 N(N � 1)(125N2 + 243N + 334)=4!

�
(6)
1

Q 4 18 52 121 N(N + 1)(N + 2)(N + 3)(N + 4)=5!�N

�
(6)
2

ESQ 14 87 316 870 N3(N + 1)(N + 2)=3!� N

�
(6)
3

NL 18 132 540 1620 N3(N2 + 1)=2!�N

�
(6)
4

ESQ 16 105 396 1120 N(N(N + 1)=2!)2 �N

�
(6)
5

NL 22 159 636 1870 N4(N + 1)=2!�N

�
(6)
6

ESQ 14 87 316 870 N3(N + 1)(N + 2)=3!� N

�
(6)
7

SQ 8 42 136 345 N2(N + 1)(N + 2)(N + 3)=4!�N

�
(6)
8

ESQ 22 159 636 1870 N4(N + 1)=2!�N

�
(6)
9

NL 30 240 1020 3120 N5 �N

�
(6)
10

ESQ 30 240 1020 3120 N5 �N

�
(6)
11

ESQ 22 159 636 1870 N4(N + 1)=2!�N

�
(6)
12

NL 18 132 540 1620 N3(N2 + 1)=2!�N

�
(6)
13

ESQ 22 159 636 1870 N4(N + 1)=2!�N

�
(6)
14

ESQ 22 159 636 1870 N4(N + 1)=2!�N

�
(6)
15

SQ 14 87 316 870 N3(N + 1)(N + 2)=3!� N

�
(6)
16

ESQ 30 240 1020 3120 N5 �N

�
(6)
17

ESQ 30 240 1020 3120 N5 �N

�
(6)
18

ESQ 30 240 1020 3120 N5 �N

�
(6)
19

SQ 22 159 636 1870 N4(N + 1)=2!�N

�
(6)
20

SQ 30 240 1020 3120 N5 �N

q = 6 418 3084 12548 37376 N(N � 1)(1296N3 + 1936N2 + 2296N + 2376)=5!

q � 6 528 3631 14201 41271 N(N � 1)(1296N3 + 2561N2 + 3511N + 4046)=5!
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Table 3: ARKN Coupling Conditions with c
[�]
i = c

[�]
i

Eqn. of Type c
[�]
i

= c
[�]
i

c
[�]
i

= c
[�]
i

c
[�]
i

= c
[�]
i

c
[�]
i

= c
[�]
i

c
[�]
i

= c
[�]
i

cond. Cond. 2-Trees 3-Trees 4-Trees 5-Trees N-Trees

�
(1)
1

Q 0 0 0 0 0

�
(2)
1

Q 0 0 0 0 0

�
(3)
1

Q 0 0 0 0 0

�
(3)
2

SQ 2 6 12 20 N(N � 1)

q = 3 2 6 12 20 N(N � 1)

�
(4)
1

Q 0 0 0 0 0

�
(4)
2

ESQ 2 6 12 20 N(N � 1)

�
(4)
3

SQ 2 6 12 20 N(N � 1)

�
(4)
4

SQ 6 24 60 120 N3 �N

q = 4 10 36 84 160 N(N � 1)(N + 3)
q � 4 12 42 96 180 N(N � 1)(N + 4)

�
(5)
1

Q 0 0 0 0 0

�
(5)
2

ESQ 2 6 12 20 N(N � 1)

�
(5)
3

NL 4 15 36 70 N2(N + 1)=2!�N

�
(5)
4

ESQ 2 6 12 20 N(N � 1)

�
(5)
5

SQ 2 6 12 20 N(N � 1)

�
(5)
6

ESQ 6 24 60 120 N3 �N

�
(5)
7

ESQ 6 24 60 120 N3 �N

�
(5)
8

SQ 6 24 60 120 N3 �N

�
(5)
9

SQ 14 78 252 620 N4 �N

q = 5 42 183 504 1110 N(N � 1)(2N2 + 9N + 16)=2!

q � 5 54 225 600 1290 N(N � 1)(2N2 + 11N + 24)=2!

�
(6)
1

Q 0 0 0 0 0

�
(6)
2

ESQ 2 6 12 20 N(N � 1)

�
(6)
3

NL 4 15 36 70 N2(N + 1)=2!�N

�
(6)
4

ESQ 2 6 12 20 N(N � 1)

�
(6)
5

NL 6 24 60 120 N3 �N

�
(6)
6

ESQ 2 6 12 20 N(N � 1)

�
(6)
7

SQ 2 6 12 20 N(N � 1)

�
(6)
8

ESQ 6 24 60 120 N3 �N

�
(6)
9

NL 14 78 252 620 N4 �N

�
(6)
10

ESQ 6 24 60 120 N3 �N

�
(6)
11

ESQ 6 24 60 120 N3 �N

�
(6)
12

NL 10 51 156 370 N3(N + 1)=2!�N

�
(6)
13

ESQ 6 24 60 120 N3 �N

�
(6)
14

ESQ 6 24 60 120 N3 �N

�
(6)
15

SQ 6 24 60 120 N3 �N

�
(6)
16

ESQ 14 78 252 620 N4 �N

�
(6)
17

ESQ 14 78 252 620 N4 �N

�
(6)
18

ESQ 14 78 252 620 N4 �N

�
(6)
19

SQ 14 78 252 620 N4 �N

�
(6)
20

SQ 30 240 1020 3120 N5 �N

q = 6 164 888 2940 7580 N(N � 1)(6N3 + 39N2 + 87N + 114)=3!

q � 6 218 1113 3540 8870 N(N � 1)(6N3 + 45N2 + 120N + 186)=3!
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Table 4: ARKN Coupling Conditions with b
[�]
i = b

[�]
i and c

[�]
i = c

[�]
i

Eqn. Type b
[�]
i

= b
[�]
i

b
[�]
i

= b
[�]
i

b
[�]
i

= b
[�]
i

b
[�]
i

= b
[�]
i

b
[�]
i

= b
[�]
i

of of c
[�]
i

= c
[�]
i

c
[�]
i

= c
[�]
i

c
[�]
i

= c
[�]
i

c
[�]
i

= c
[�]
i

c
[�]
i

= c
[�]
i

cond. Cond. 2-Trees 3-Trees 4-Trees 5-Trees N-Trees

�
(1)
1

Q 0 0 0 0 0

�
(2)
1

Q 0 0 0 0 0

�
(3)
1

Q 0 0 0 0 0

�
(3)
2

SQ 0 0 0 0 0

q = 3 0 0 0 0 0

�
(4)
1

Q 0 0 0 0 0

�
(4)
2

ESQ 0 0 0 0 0

�
(4)
3

SQ 0 0 0 0 0

�
(4)
4

SQ 2 6 12 20 N(N � 1)

q = 4 2 6 12 20 N(N � 1)

�
(5)
1

Q 0 0 0 0 0

�
(5)
2

ESQ 0 0 0 0 0

�
(5)
3

NL 1 3 6 10 N(N � 1)=2!

�
(5)
4

ESQ 0 0 0 0 0

�
(5)
5

SQ 0 0 0 0 0

�
(5)
6

ESQ 2 6 12 20 N(N � 1)

�
(5)
7

ESQ 2 6 12 20 N(N � 1)

�
(5)
8

SQ 2 6 12 20 N(N � 1)

�
(5)
9

SQ 6 24 60 120 N3 �N

q = 5 13 45 102 190 N(N � 1)(2N + 9)=2!
q � 5 15 51 114 210 N(N � 1)(2N + 11)=2!

�
(6)
1

Q 0 0 0 0 0

�
(6)
2

ESQ 0 0 0 0 0

�
(6)
3

NL 1 3 6 10 N(N � 1)=2!

�
(6)
4

ESQ 0 0 0 0 0

�
(6)
5

NL 2 6 12 20 N(N � 1)

�
(6)
6

ESQ 0 0 0 0 0

�
(6)
7

SQ 0 0 0 0 0

�
(6)
8

ESQ 2 6 12 20 N(N � 1)

�
(6)
9

NL 6 24 60 120 N3 �N

�
(6)
10

ESQ 2 6 12 20 N(N � 1)

�
(6)
11

ESQ 2 6 12 20 N(N � 1)

�
(6)
12

NL 4 15 36 70 N2(N + 1)=2!�N

�
(6)
13

ESQ 2 6 12 20 N(N � 1)

�
(6)
14

ESQ 2 6 12 20 N(N � 1)

�
(6)
15

SQ 2 6 12 20 N(N � 1)

�
(6)
16

ESQ 6 24 60 120 N3 �N

�
(6)
17

ESQ 6 24 60 120 N3 �N

�
(6)
18

ESQ 6 24 60 120 N3 �N

�
(6)
19

SQ 6 24 60 120 N3 �N

�
(6)
20

SQ 14 78 252 620 N4 �N

q = 6 63 258 678 1440 N(N � 1)(6N2 + 39N + 87)=3!

q � 6 78 309 792 1650 N(N � 1)(6N2 + 45N + 120)=3!

q = 7 272 1354 4216 10380 N(N � 1)(24N3 + 216N2 + 616N + 976)=4!

q � 7 350 1663 5008 12030 N(N � 1)(24N3 + 240N2 + 796N + 1456)=4!
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all. In certain special cases one may be able to rule out extended subquadrature, or nonlinear order
conditions based on the structure of the ODE at hand. To evaluate the value of the error estimate, one

may evaluate the quality parameters B(p+2), C(p+2), and E(p+2) using each �
(q+1)
k from each elemental

method or using every �
(q+1)
k[n] .

All embedded schemes considered here are applied in local extrapolation mode. For a given order
of accuracy, one strives to minimize A(q+1). Based on experience with q = p + 1 ERK pairs, B(p+2),
C(p+2), and E(p+2) are ideally kept of order unity. Another term,

D = Maxfja[�]ij j; jb[�]i j; ĵb[�]i j; jc[�]i jg; (11)

is usually kept less than 20.
Because of the large number of order conditions associated with the embedded scheme of an ARKN

relative to any one of its elemental methods, we allow for the possibility that the order of the main and
embedded methods di�er by more than one, as is customary.66 A priori quality criteria for q = p + 2
pairs does not appear to have been derived in the context of �rst-order ODEs.

2.1.4. Simplifying Assumptions

Butcher8, 27 row and column simplifying assumptions will be helpful in designing methods because
they can reduce and simplify the order conditions. By comparing tables 1 through 4, one quickly

surmises that higher-order methods e�ectively require the use of the assumptions b
[�]
i = b

[�]
i = bi and

c
[�]
i = c

[�]
i = ci. Also, without identical root or canopy nodes, application of Butcher simplifying

assumptions would become very awkward; therefore, simplifying assumptions are considered in the
form

C[�](�; i) :
sX

j=1

a
[�]
ij c

q�1
j =

c
q
i

q
; i = 1; :::; s; q = 1; :::; �; (12)

D[�](�; j) :
sX
i=1

bic
q�1
i a

[�]
ij =

bj
q
(1� c

q
j); j = 1; :::; s; q = 1; :::; �: (13)

2.1.5. Stability

The linear stability function for N-additive methods is considered using the equation

F (U) =
NX
�=1

�[�]U; (14)

from which it is determined that the stability function is10

R(z[1]; z[2]; � � � ; z[N ]) =
P (z[1]; z[2]; � � � ; z[N ])

Q(z[1]; z[2]; � � � ; z[N ])
; (15)

=
Det

h
I�PN

�=1

�
z[�]A[�]

�
+
PN

�=1

�
z[�]e
 b[�]

T
�i

Det
h
I�PN

�=1

�
z[�]A[�]

�i ; (16)

where A[�] = a
[�]
ij , b

[�] = b
[�]
i , I = �ij , z

[�] = �[�]�t, and e = f1; 1; � � � ; 1g. Stability for the embedded
method is considered using

R̂(z[1]; z[2]; � � � ; z[N ]) =
Det

h
I�PN

�=1

�
z[�]A[�]

�
+
PN

�=1

�
z[�]e
 b̂[�]

T
�i

Det
h
I�PN

�=1

�
z[�]A[�]

�i ; (17)
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where b̂[�] = b̂
[�]
i . For nonlinear stability, which we do not pursue, one may consider

F (U) =
NX
�=1

�[�](t)U: (18)

De�ning Z[�] =
n
z
[�]
1 ; z

[�]
2 ; � � � ; z[�]s

o
as the values of z

[�]
i at times t(n) + ci�t, the Runge-Kutta K-

function is given by

K(Z[1];Z[2]; � � � ;Z[N ]) =
Det

h
I�PN

�=1

n
Z[�]A[�]

o
+
PN

�=1

n
Z[�]e
 b[�]

T
oi

Det
h
I�PN

�=1

�
Z[�]A[�]

	i : (19)

2.1.6. Conservation

Conservation of certain integrals or invariants may also be of interest in additive Runge-Kutta
methods.3, 28 Similar to the algebraic stability matrix, one may de�ne

M
[�;�]
ij = b

[�]
i a

[�]
ij + b

[�]
j a

[�]
ji � b

[�]
i b

[�]
j : (20)

ARKN methods conserve linear �rst integrals, in general, only if b
[�]
i � b

[�]
i = 0, and conserve certain

quadratic �rst integrals, in general, only if b
[�]
i �b[�]i = 0 and M

[�;�]
ij = O, where i; j = 1; 2; � � � ; s; �; � =

1; 2; � � � ; N; � 6= �. Conservation of cubic invariants with Runge-Kutta methods is not possible.9, 28, 36

2.1.7. Dense Output

The purpose of dense output26, 50 has traditionally been to allow high-order interpolation of the
integration variables at any point, t(n) + ��t, inside the current integration step where 0 � � � 1. It
may also be used, albeit more cautiously, for extrapolating integration variable values to enable better
stage value guesses when one or more of the elemental methods is implicit.49, 55 For an ARKN method,
it is accomplished as

U(t(n) + ��t) = U (n) + (�t)
NX
�=1

sX
i=1

b
�[�]
i (�)F [�](U (i)); b

�[�]
i (�) =

p�X
j=1

b
�[�]
ij �j ; b

�[�]
i (� = 1) = b

[�]
i ; (21)

where p� is the lowest order of the interpolant on the interval 0 � � � 1. By construction, b
�[�]
i (� =

0) = 0. Order conditions, at order m, for the dense output method are given by

�
�(m)
k[n] =

1

�

sX
i

b�i�
(m)
i;k[n] �

��m

m!
: (22)

Setting m = q and � = 1, we retrieve (5). As with the main and embedded formulae, one may write
terms like A�(p

�+1) = A�(p
�+1)(�) to access the accuracy of the dense output method. When used as

an extrapolation device (� > 1), the stability function R�(z[1]; z[2]; � � � ; z[N ]; �) must be considered,6

R�(z[1]; z[2]; � � � ; z[N ]; �) =
Det

h
I�PN

�=1

�
z[�]A[�]

�
+
PN

�=1

�
z[�]e
 b�[�]

T
(�)
�i

Det
h
I�PN

�=1

�
z[�]A[�]

�i ; (23)

where b�[�] = b
�[�]
i . Throughout this paper, we will assume b

�[�]
ij = b

�[�]
ij = b�ij .
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3. Implicit-Explicit ARK2 Methods

Although one could consider a triple partitioning of the convection-di�usion-reaction equations by
using two-explicit methods and one implicit method, the increase in coupling conditions from N = 2
to N = 3 as well as the complication to the stability function warrants the former. Simplifying
assumptions might facilitate solving extra order conditions, but at N = 3 more trees of similar error
result in higher principal error norms. Linear stability of the hybrid explicit method using a real-axis
optimized method for di�usion and an imaginary-axis optimized method for convection will have many
�ve- and six-node coupling tall trees with which to contend. The equations are therefore cast in the
form

dU

dt
= Fns + Fs; (24)

where Fns represents the non-sti� terms and Fs represents the sti� terms, and we consider implicit-
explicit ARK2 methods. ERK methods are used to integrate the non-sti� terms. Sti� terms are treated
with ESDIRK methods.2, 32, 42, 43 Coe�cients for the ERK and ESDIRK methods will be distinguished

by a
[E]
ij and a

[I ]
ij , respectively. ESDIRKs o�er the advantages of allowing L-stability, sti� accuracy, and a

stage-order of two. They di�er from the more traditional SDIRK1, 27 methods by having an explicit �rst
stage. A consequence of allowing a stage-order of two is that algebraic stability becomes impossible.64

As we will always invoke b
[E]
i = b

[I]
i = bi, b̂

[E]
i = b̂

[I]
i = bi and c

[E]
i = c

[I ]
i = ci in this paper, their

superscripts are henceforth super
uous. In general, an ERK method has s(s+1)=2 degrees of freedom
(DOF) available to satisfy all order and any other conditions, where s is the number of stages. An
ESDIRK has (s2 + s + 2)=2 available DOF. Combining the two into an ARK2 scheme, if each bi and
each ci are made equal, (2s � 1) DOF are lost, leaving (s2 � s + 2) DOF. A further assumption of

a
[I]
sj = bj, the sti�y-accurate assumption, reduces this to (s2 � 2s + 2) and facilitates L-stability as

well as forces the sti� part of U (n+1) to be computed implicitly. It is particularly useful in cases of
singular-perturbation type problems and, when combined with I-stability, generally tolerates sti�ness
better than non-sti�y accurate L-stable methods. Incorporating sti� accuracy and a stage-order of 2
into all of the ESDIRKs,42 the IMEX ARK2 methods then take the form

0 0 0 0 0 � � � 0
2
 2
 0 0 0 � � � 0

c3 a
[E]
31 a

[E]
32 0 0

. . .
...

...
...

...
. . .

. . .
. . . 0

cs�1 a
[E]
s�1;1 a

[E]
s�1;2 a

[E]
s�1;3

. . . 0 0

1 a
[E]
s;1 a

[E]
s;2 a

[E]
s;3 � � � a

[E]
s;s�1 0

b1 b2 b3 � � � bs�1 


b̂1 b̂2 b̂3 � � � b̂s�1 b̂s

0 0 0 0 0 � � � 0
2
 
 
 0 0 � � � 0

c3 a
[I]
31 a

[I]
32 
 0

. . .
...

...
...

...
. . .

. . .
. . . 0

cs�1 a
[I]
s�1;1 a

[I]
s�1;2 a

[I]
s�1;3 � � � 
 0

1 b1 b2 b3 � � � bs�1 


b1 b2 b3 � � � bs�1 


b̂1 b̂2 b̂3 � � � b̂s�1 b̂s;

where 
 = a
[I]
ii ; i = 2; 3; � � � ; s and should not be confused with the density of an N-tree, 
, discussed in

section 2.1.1.
To identify the schemes derived in this paper, a nomenclature similar to that originally devised

by Dormand and Prince is followed.41 Schemes will be named ARKq(p)sS[qso]X , where q is the order
of the main method, p is the order of the embedded method, s is the number of stages, S is some
stability characterization of the method, qso is the stage order of the implicit method, and X is used
for any other important characteristic of the method. For S, we use L to denote an L-stable ARK2.
Distinguishing between L-stable methods that are or are not sti�y accurate is important; hence, we
use X as SA to denote sti�y accurate.

3.1 Design

12



3.1.1 Accuracy

Both ERK and ESDIRK methods are subject to the f1; 1; 2; 4; 9; 20g order conditions for orders
f1; 2; 3; 4; 5; 6g. These order conditions are listed up to sixth-order for 1-trees and �fth-order for gen-

eral 2-trees in appendix A. With the assumptions b
[I]
i = b

[E]
i = bi and c

[I]
i = c

[E]
i = ci, there are

f0; 0; 0; 2; 13; 63g coupling conditions at the same orders (see section II.1526). At fourth- and �fth-
order, these coupling order conditions are shown as bicolored trees in �gure 1.

Figure 1: Fourth- and �fth-order bicolored coupling conditions for b
[I]
i = b

[E]
i and c

[I ]
i = c

[E]
i .

Further reduction of the number and complexity of order conditions is possible by using Butcher
simplifying assumptions. Unfortunately, they may con
ict with one another. For instance, applying
assumptions D[E](1; j) and D[I ](1; j) gives rise to two inconsistent equations at j = s,

bs
 = bs(1� cs); 0 = bs(1� cs): (25)

This implies that either bs = 0, cs = 1, or cs = 1 � 
. The �rst is unacceptable while the remaining
two are contradictory; hence, the column simplifying assumption can only be applied to one of the
methods. In conjunction with the sti�y accurate assumption that forces cs = 1, it may only be used

on the ERK. We avoid the option of setting both a
[I ]
11 and a

[I]
ss to zero because of the complication that

will arise in enforcing L-stability and the possibility of explicitly computed stage values. Additional
interscheme con
ict occurs upon imposition of C[E](3; i) and C[I ](3; i). A stage order of two on the
sti�y accurate ESDIRK is imposed by enforcing C[I](2; i) = 0 for i = 2; :::; (s� 1). A stage order of

three is impossible because of the second stage where
Ps

j=1 a
[I]
2j c

2
j � c32=3 = 4
3=3 6= 0. Reducing the

truncation error of the second stage is clearly facilitated by smaller values of 
.

3.1.2 Stability

Linear stability for an ERK-ESDIRK ARK2 method with b
[I]
i = b

[E]
i = b is analyzed using the

stability function10

R(z[E]; z[I]) =
Det

h
I� z[E]A[E] � z[I]A[I] +

�
z[E] + z[I]

�
e
 bT

i
Det

�
I� z[I]A[I]

� =
P (z[E]; z[I])

Q(z[I])
; (26)
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where

P (z[E]; z[I]) =
sX
i=0

8<
:
s�iX
j=0

pij
�
z[E]

�j9=;
�
z[I ]
�i
; (27)

Q(z[I ]) = 1 +
s�1X
i=1

qi
�
z[I]
�i

=
�
1� 
z[I]

�s�1
=

s�1X
k=0

 
(�1)k(s� 1)!

((s� 1)� k)!k!

!

k
�
z[I ]
�k

: (28)

To recover the ERK method only, pij = p0j and qi = 0. The ESDIRK is retrieved with pij = pi0.
Both the ARK2 and ESDIRK methods share the same qi coe�cients. In all cases p00 = 1. A total of
(s � 1)(s� 2)=2 of the pij coe�cients are coupling stability terms. For an ESDIRK to be L-stable, it
is required that 
 > 0 so that the stability function remains analytic in the complex left-half-plane,
the method must be I-stable, and ps;0 = ps�1;0 = 0 so that the stability function vanishes as z[I ] tends
toward in�nity. I-stability of the ESDIRK method is determined using the E-polynomial27 given by

E(y) = Q(+iy)Q(�iy)� P (+iy)P (�iy) =
sX

j=0

E2jy
2j ; (29)

where i =
p�1 and P (�iy) is composed of only the pi0 terms. Imaginary axis (I-)stability requires

that E(y) � 0 for all real values of y. It is su�cient but not necessary to have all E2j � 0. An L-stable
ESDIRK will have E2s = 0. An order q ESDIRK will have E2j = 0 for 2j � q.

Above and beyond L-stability of the ESDIRK method, it may be useful to control the damping
of the large scaled eigenvalues, z[I ], at intermediate stages.69 The internal stability function at the

nth-stage may be constructed for DIRK-type methods by using portions of the a
[I]
ij matrix. Denoting

a
[I]
ij ; i; j = 1; 2; � � � ; n as A and a

[I]
nj ; j = 1; 2; � � � ; n as Bj , the internal stability function is given by

R
(n)
int (z

[I ]) =
Det

h
I � z[I]A[I] + z[I ]E 
 BT

i
Det

�I � z[I]A[I]
� =

P
(n)
int (z

[I])

Q
(n)
int (z

[I])
; (30)

where I is the (n � n) identity matrix, and E is the one-vector of length n. Our concern will be the

value of R
(n)
int (�1). P

(n)
int is, in general, a polynomial of degree n�1 in z[I] because Anj = Bj while Q(n)

int

is, in general, of degree n. Consequently, SDIRKs have R
(n)
int (�1) = 0. ESDIRKs, with Q

(n)
int reduced

to degree n� 1 because a
[I ]
11 = 0, do not generally satisfy R

(n)
int (�1) = 0.

In terms of step-wise stability, choosing the sti�y accurate assumption forces ps;0 = 0. Placing

a
[I]
1j = 0 forces ps�1;0 = 0 but sacri�ces (s � 1) DOF and the possibility of higher stage-order. A

consequence of setting a
[I]
11 = 0, what e�ectively distinguishes the ESDIRK from the SDIRK, is that it

forces qs = 0. Achieving an L-acceptable stability function for the ARK2,

R(z[E]; z[I]) =
1 + � � �+

n
ps�1;1z

[E] + ps�1;0
o�

z[I ]
�s�1

+ ps;0
�
z[I]
�s

1 + � � �+ (�
)s�1 �z[I]�s�1 ; (31)

and not just the ESDIRK, is now more complicated because of ps�1;1. In both the ESDIRK and
IMEX ARK2 cases, ps;0 and ps�1;0 must vanish for L-stability, but the IMEX scheme must also satisfy
ps�1;1 = 0. Several of the methods given by Ascher et al.5 and Griepentrog19 do not account for this
and consequently have R(z[E];�1) depending linearly on z[E]. Similar comments apply to p̂ij and

p�ij =
Pp�

k=1 p
�

ijk�
k , the coe�cients of the P-polynomials for the embedded and dense-output formulae.
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A bene�t of a zero-column in a
[I]
ij ; i = 1 for an additive method is that on problems such as Kreiss's

problem,13, 27 which may act like an index-2 di�erential algebraic equation, the initial value of the
algebraic variable is not propagated along with the solution.38 Ascher et al.5 and Calvo et al.10 both

choose a
[I]
sj = bj as well as zero-padded SDIRKs (a

[I ]
1j = 0) and consequently their methods perform

relatively well on Kreiss's problem.

3.1.3 Conservation

As the scheme weights, bi, for the current ERK and ESDIRK methods are the same, linear �rst
integrals will be conserved. Certain quadratic �rst integrals will, however, only be conserved if linear
�rst integrals are conserved and

M
[E;I]
ij = bia

[I]
ij + bja

[E]
ji � bibj = O; (32)

vanishes. We will adopt the point of view that although none of the methods will make this vanish,
minimizing the magnitude of this matrix,

jjM [E;I]
ij jj =

r
M

[E;I]
ij M

[E;I]
ji ; (33)

should enhance conservation characteristics.

3.2 Implementation

3.2.1 Stage Values

Using the de�nitions F
(j)
ns = Fns

�
U (j); t(n) + cj�t

�
and F

(j)
s = Fs

�
U (j); t(n) + cj�t

�
, one must

solve

U (i) = U (n) +X(i) + (�t)
F (i)
s ; i � 2; X(i) = (�t)

i�1X
j=1

�
a
[E]
ij F

(j)
ns + a

[I]
ij F

(j)
s

�
; (34)

where X(i) is explicitly computed from existing data. Combining this with an appropriate starting

guess, a modi�ed23, 33, 58, 60 Newton iteration provides U (i) and F
(i)
s . In cases where direct methods

are appropriate, this is accomplished by solving�
I � (�t)


@Fs
@U

����
k

��
U (i) � U

(i)
k

�
= �

�
U
(i)
k � U (n)

�
+ X(i) + (�t)
Fs

�
U
(i)
k

�
; (35)

where the subscript k denotes the value on the kth iteration, M = [I�
(�t)(@Fs=@U)jk] is the iteration
matrix, and d(i) =

�
U (i) � U

(i)
k

�
is the displacement. On the kth iteration one has

Md
(i)
k = r

(i)
k ; U

(i)
k+1 = U

(i)
k +M�1r

(i)
k ; (36)

where r(i) is the residual. The iteration is terminated when either d
(i)
k (displacement test) or r

(i)
k

(residual test) are su�ciently small,33, 65

�residual = c� � r
(i)
k ; or; �displacement = c� � d

(i)
k ; c � 0:005;

where � is the integration error tolerance and c is the tolerance ratio. F
(i)
ns may then be computed using

U (i). Inexact14, 15, 30, 40, 47, 53 Newton methods may be more appropriate for larger systems of coupled
equations.
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3.2.2 Stage-Value Predictors

Stage-value iteration convergence rates may be substantially improved and convergence failures
may be minimized by choosing a good starting guess. The most primitive approach to obtaining a
guess for the integration variables at the next stage is to use the most recent stage values; the trivial
guess. An oftentimes better way to obtain stage-value starting guesses is by using a dense output
formula.27, 32, 49, 55 Second and later steps may use the function evaluations from the previous step to
extrapolate into the current step. Stage-value guesses for the ith stage of the step n + 1 are obtained
using function evaluations from step n as

U (i)(tn + �i�t) = U (n) + (�t)
sX

j=1

b�j(�i)
�
F (j)
ns + F (j)

s

�
; (37)

�i = 1 + rci; r =
(�t)(n+1)

(�t)(n)
: (38)

Shortcomings of this approach include order-of-accuracy reduction when an interpolation formula is
used in extrapolation mode and the introduction of instabilities into the extrapolated guess. As is
sometimes done with the implicit error control estimate when substantial sti�ness is present, one
may wish to smooth the predicted stage value by multiplying it by the iteration matrix.32, 59 More
sophisticated predictors have been derived for DIRK methods.29, 44, 56 We do not consider these, in
part, because computer memory management may become a problem. To conserve memory usage
during extrapolation, all s-stages may be estimated at the beginning of the step and function values
might then be overwritten by stage-value guesses, one equation at a time. For large r, the trivial guess
may be more prudent.

3.2.3. Error and Step-Size Control

Step-size control is a means by which accuracy, iteration, and to a lesser extent stability are con-
trolled. The choice of the (�t) may be chosen from many criteria, among those are the (�t) from the
accuracy based step controller, the (�t)inviscid and (�t)viscous associated with the inviscid and viscous
stability limits of the ERK, and the (�t)iter associated with iteration convergence.23 If error control
reliability is su�cient, CFL numbers may be removed as their function would be super
uous. For
q = p + 1 pairs, one could consider timestep control of the IMEX schemes using I-, PI-, PID-, or
PC-controllers20, 21, 22, 63

(�t)
(n+1)
I = �(�t)(n)

�
�

jj�(n+1)jj1

� 1
p+1

; (39)

(�t)
(n+1)
PI = �(�t)(n)

�
�

jj�(n+1)jj1

� 0:7
p

(
jj�(n)jj1

�

) 0:4
p

; (40)

(�t)
(n+1)
PID = �(�t)(n)

�
�

jj�(n+1)jj1

�� ( jj�(n)jj1
�

)� �
�

jj�(n�1)jj1

�

(41)

(�t)
(n+1)
PC = �(�t)(n)

�
�

jj�(n+1)jj1

� 2
p

(
jj�(n)jj1

�

) 1
p
"

(�t)(n)

(�t)(n�1)

#
; (42)

with � � 0:9, � is a user speci�ed tolerance, and p is the order-of-accuracy of the embedded method.
The I-, PI-, and PID-controllers are appropriate to explicit methods. Implicit methods use either I- or
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PC-controllers. A PID-controller is considered because many stability optimized ERK methods are SC-
unstable with a PI-controller for eigenvalues on the real axis.41 Its characteristic roots are those of the
equation �3+(p��1)�2�p��+p
 = 0. Individual controller gains are obtained via kI = p(���+
),
kP = p(� � 2
), and kD = p
. One may wish to keep controller gains �xed, independent of stepsize

changes. This may be done by preselecting gains, then using !n =
(�t)n

(�t)n�1
and

p� =

�
kI + kP +

�
2!n

1 + !n

�
kD

�
; p� = [kP + 2!nkD] ; p
 =

 
2!2

n

1 + !n

!
kD: (43)

In the present context, we have selected kI = 0:25, kP = 0:14, kD = 0:10, or � = 0:49=p, � = 0:34=p,

 = 0:10=p when !n = 1, giving characteristic roots of f�0:518; 0:247; 0:781g. The controller is SC-
stable at all stability boundary points of the ERK in the complex left-half-plane for each of the three
proposed methods. Inclusion of second-derivative gain, a PIDD2-controller, was not found to enhance
control. The term �(n+1) is given as either

�(n+1) = U (n+1) � Û (n+1); �(n+1) = M�1
�
U (n+1) � Û (n+1)

�
; (44)

depending on whether su�cient sti�ness is present to require smoothing.32, 59 Both approaches may not
behave well if substantial order-reduction occurs due to extreme sti�ness because, at a minimum, p no
longer re
ects the actual order of the embedded method. Stability based time step limits involving the
inviscid and viscous CFL numbers are given by (�t)inviscid � �(�x)=(u+a) and (�t)viscous � �v(�x)2=�
where a is the local speed of sound, u is the magnitude of local 
uid convection speed, and � is an
appropriate di�usivity of either mass, momentum, or energy.41 For implicit-explicit methods, we select

(�t)(n+1) = Min
n
(�t)(n+1)error (�t)inviscid; (�t)viscous; (�t)iteration

o
: (45)

It remains to be determined which controller(s) are best suited to IMEX methods. In cases where
q = p+ 2, we follow Tsitouras and Papakostas66 and consider a modi�ed I-controller, but not the PI-,
PID-, and PC-controllers. In this case

(�t)
(n+1)
I = �(�t)(n)

�
�

f2(�t)jj�n+1jj1

� 1
p+1

; (46)

where f2 � 10 is experimentally optimized.

4. Third-Order Methods

A third-order, 3(2) pair, ARK2 scheme is designed in four stages using b
[I]
i = b

[E]
i , c

[I]
i = c

[E]
i , and

simplifying assumption C[I](2; i). Sti� accuracy and a stage-order of two are incorporated into the
four-stage ESDIRK method. The main method is obtained by solving for the s2 � 2s + 2 = 10 DOF
(s = 4) using

�
(k)
1 = 0; k = 1; 2; 3; p30 = p31 = 0; c3 = 3=5;

[E]�
(3)
2 = 0; [E]�

(4)
4 = 1=35;

Ps
j=1 a

[I]
ij cj = c2i =2; i = 2; 3;

(47)

with c3 and
[E]�

(4)
4 being used for optimization. Total fourth-order principal error is A(4) = 0:07217.

Linear stability of the ERK is given by (�; �v) = (1:24; 0:92). Solving p30 for 
 results in a cubic
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equation, 6
3 � 18
2 + 9
 � 1 = 0, having three roots. Only one of these gives I-stability, 
 �
0:435866521508458999416019. An embedded method is found by enforcing

�̂
(k)
1 = 0; k = 1; 2; p̂40 = 0; p̂30 = �3q3=40: (48)

Second-order dense output is achieved by solving for b�i =
P2

j=1 b
�

ij�
j using

�
�(k)
1 = 0; k = 1; 2;

2X
j=1

b�4j = b4; p�40 = p�312 = 0: (49)

Its properties are summarized in table 5. Coe�cients of the scheme, ARK3(2)4L[2]SA, are given in

Table 5: ARK3(2)4L[2]SA Dense Output Method

Property � = 1 � = 2 � = 3 � = 4 � = 5

A�(3)(�) 0 1.098 4.809 12.87 27.02

A�(4)(�) 0.07217 2.280 14.18 48.23 121.9

R�(z[E];�1; �) 0 5.789 18.37 37.74 63.89

appendix D. Characteristics of the method are listed in appendices B and C.

5. Fourth-Order Methods

A �ve-stage ARK2 method using a sti�y-accurate, L-stable, stage-order 2, ESDIRK method must
satisfy 24
4�96
3+72
2�16
+1 = 0. Of the four roots to this equation, only one leads to an L-stable
method resulting in c2 = 2
 � 1:14563212496426971081600277. Further, the minimum principal error
associated with the two free-parameter family of �ve-stage, fourth-order, stage-order 2, sti�y-accurate,
L-stable ESDIRKs is A(5) = 0:03855, approximately 15 times greater than SDIRK4.27 In spite of these
shortcomings, one may construct a fourth-order, 4(2), ARK2 pair using identical root and canopy nodes
as well as row simplifying assumption C [I](2; i). With 17 main and 5 embedded available DOF, one
may solve

�
(k)
1 = 0; k = 1; 2; 3; 4;

Ps
j=1 a

[I ]
ij cj = c2i =2; i = 2; 3; 4;

p40 = p41 =
[E]�

(3)
2 = [E]�

(4)
2;3;4 =

[I ]�
(4)
3 = 0;

Ps
i;j=1 bia

[I]
ij a

[E]
ij ck = 1=4!;

c3 = 50=100; c4 = 95=100; �̂
(k)
1 = 0; k = 1; 2; �̂

(3)
2 = p̂50 = 0; p̂40 = �q4=10;

(50)

and obtain a leading order principal error norm of A(5) = 0:07664. Linear stability limits for the explicit
method, in terms of the inviscid and viscous CFL numbers, are (�; �v) = (1:38; 0:67).

For the design of a fourth-order, 4(3), ARK2 pair, we again use the simplifying assumptions b
[I]
i =

b
[E]
i and c

[I]
i = c

[E]
i . Only sti�y accurate, stage-order 2, ESDIRK methods are employed. Using six

stages permits s2 � 2s+ 2 = 26 DOF (s = 6). The value of 
 must be

0:2479946362127474551679910� 
 � 0:6760423932262813288723863; (51)

for I-stability.27 Besides facilitating better iterative convergence of the modi�ed Newton method, smaller
values of 
 tend to result in lower truncation error in the implicit method. For simplicity, we use
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 = 1=4. With assumptions C[I](2; i) and C[E](2; i), ARK4(3)6L[2]SA satis�es

�
(k)
1 = 0; k = 1; 2; 3; 4;

Ps
j=1 a

[I]
ij cj = c2i =2; i = 2; 3; 4; 5;

Ps
j=1 a

[E]
ij cj = c2i =2; i = 3; 4; 5; 6

b2 = p50 = p51 =
[E]�

(4)
3 = [I]�

(4)
3 =

Ps
i=1 bia

[I]
i2 =

Ps
i=1 bia

[E]
i2 = 0;

c3 = 332=1000; c4 = 62=100; c5 = 85=100; 
 = 1=4;
[E]�

(5)
5 = 1=8000; [E]�

(5)
9 = 1=135; [E]�

(6)
20 = 1=1250;

(52)

where A(5) = 0:01224 and (�; �v) = (2:01; 1:06). The embedded method for this scheme is found by
solving

�̂
(k)
1 = 0; k = 1; 2; 3; b̂2 = p̂60 = 0; p̂50 = �3q5=20: (53)

Dense output may be approached by either maximizing accuracy or stability. If the method is to be
used for interpolation, then a third-order method is appropriate. For extrapolation, stability is more
important and a second-order method is constructed. Third-order dense, or continuous, output is
achieved by solving for b�i =

P3
j=1 b

�

ij�
j with

�
�(k)
1 = 0; k = 1; 2; 3; b�2 = p�60 = 0; p�513 = �3q5; p�502 = �3q5; P3

j=1 b
�

6j = b6: (54)

Second-order dense output is achieved with p� = 2 by solving

�
�(k)
1 = 0; k = 1; 2; b�2 = p�60 = p�51 = p�502 = 0;

P2
j=1 b

�

6j = b6: (55)

Properties of these two methods are given in table 6. Characteristics and coe�cients of the scheme

Table 6: ARK4(3)6L[2]SA Dense Output Method

Property � = 1 � = 2 � = 3 � = 4 � = 5

2nd �Order

A�(3)(�) 0 1.106 5.049 13.56 28.38

A�(4)(�) 0 2.459 14.79 49.52 124.1

R�(z[E];�1; �) 0 -1 -2 -3 -4

3rd �Order

A�(4)(�) 0 2.206 12.86 42.48 106.5

A�(5)(�) 0.01224 3.852 30.61 132.1 410.2

R�(z[E];�1; �) 0 21.2 - 10.4 z[E] 92.6 - 49.1 z[E] 242 - 134 z[E] 499 - 284 z[E]

ARK4(3)6L[2]SA are given in appendices B, C, and D.

6. Fifth-Order Methods

In principle, one may construct a �fth-order ARK2 method in seven stages using simplifying as-

sumptions b
[I]
i = b

[E]
i , c

[I]
i = c

[E]
i , C[E](2; i), D[E](1; j), and C[I](2; i). L-stable methods require that

0:1839146536751751632321436� 
 � 0:3341423670680504359540301: (56)
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With the 37 DOF available, minimally, the following 33 equations must be solved

�
(k)
1 = 0; k = 1; 2; � � � ; 5; Ps

i=1 bia
[E]
ij = bj(1� cj); j = 2; 3; � � � ; 6;Ps

j=1 a
[I]
ij cj = c2i =2; i = 2; 3; � � � ; 6; Ps

j=1 a
[E]
ij cj = c2i =2; i = 3; 4; � � � ; 6;

b2 = p60 = p61 =
[E]�

(5)
4 = [I ]�

(4)
3 = [I]�

(5)
4;5;8 =

1
2

Ps
i;j=1 bia

[I ]
ij a

[E]
jk c

2
k � 1=5! = 0;Ps

i=1 bia
[I]
i2 =

Ps
i=1 bicia

[E]
i2 =

Ps
i=1 bicia

[I]
i2 =

Ps
i;j=1 bia

[I]
ij a

[E]
j2 =

Ps
i;j=1 bia

[I ]
ij a

[I]
j2 = 0:

(57)

To solve this system of equations, one must solve for at least one abscissa directly. Given the size of

the system, it is more fruitful to temporarily ignore
Ps

i=1 bicia
[I]
i2 = 0 and

Ps
i;j=1 bia

[I]
ij a

[I ]
j2 = 0, include

[E]�
(6)
20 = 0, specify c3, c4, c5, and c6, and investigate if the scheme merits further e�ort. With these

changes, both implicit and explicit methods are �fth-order but the coupling method is only fourth-order.
We have been unable to �nd any promising solutions to this method.

Adding a stage, we now consider an eight-stage 5(4) pair. Eight stages permit s2�2s+2 = 50 DOF
in the main method and 8 in the embedded method. The primary di�culty in designing a 5(4) pair is
reducing the number of embedded order conditions while simultaneously keeping the implicit portion L-
stable and keeping the tall trees of the explicit method well placed. We select simplifying assumptions

b
[I]
i = b

[E]
i , c

[I]
i = c

[E]
i , C[I](3; i), D[E](1; j), and C[E](2; i). In addition, we set the lower elements

within the second column of each aij matrix to zero. ARK5(4)8L[2]SA is constructed according to the
following conditions

�
(k)
1 = 0; k = 1; 2; � � � ; 5; Ps

i=1 bia
[E]
ij = bj(1� cj); j = 3; 4; � � � ; 7;Ps

j=1 a
[I]
ij cj = c2i =2; i = 2; 3; � � � ; 7; Ps

j=1 a
[E]
ij cj = c2i =2; i = 3; 4; � � � ; 7;Ps

j=1 a
[I]
ij c

2
j = c3i =3; i = 3; 4; � � � ; 7; a

[I]
i2 = 0; i = 4; 5; � � � ; 7; a

[E]
i2 = 0; i = 4; 5; � � � ; 8;

b2 = b3 = p70 = p71 =
[E]�

(5)
4 = [I]�

(5)
5 =

Ps
i=1 bia

[I]
i3 = 1

2

Ps
i;j=1 bia

[I ]
ij a

[E]
jk c

2
k � 1=5! = 0;

�̂
(k)
1 = 0; k = 1; 2; � � � ; 4; b̂2 = b̂3 = p̂80 = �̂

(4)
3 = 0; p̂70=q7 = 1=5;

c5 = 92=100; c6 = 24=100; c7 = 60=100; 
 = 41=200; a
[E]
75 = �1=8; a

[E]
76 = �1=8;

(58)

where A(6) = 0:006988 but (�; �v) = (0:43; 0:96). Better 5(4) pairs probably require nine-stages.
A fourth-order dense output formula is not possible. Third-order continuous output, however, is

achieved by solving for b�i =
P3

j=1 b
�

ij�
j with

Ps
i=1 b

�

i c
k�1
i = 1=k!; k = 1; 2; 3; b�2 = b�3 = p�80 = p�71 = p�703 = p�702 = 0;

P3
j=1 b

�

8j = b8: (59)

For ARK5(4)8L[2]SA, the dense output method is characterized in table 7. Coe�cients of the scheme

Table 7: ARK5(4)8L[2]SA Dense Output Method

Property � = 1 � = 2 � = 3 � = 4 � = 5

A�(4)(�) 0 0.295 4.434 21.01 63.59

A�(5)(�) 0 1.581 21.03 107.8 361.2

R�(z[E];�1; �) 0 -1 -2 -3 -4

ARK5(4)8L[2]SA are given in appendix D while method properties are given in appendices B and C.

7. Test Problems
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To test the IMEX ARK2 methods that have just been presented, four separate test problems having
adjustable sti�ness are considered. Ultimately, all equations are singular perturbation problems25, 73

and each may be evaluated with either unperturbed or the more troublesome perturbed initial conditions.27

7.1. Kap's Problem

Dekker and Verwer13 investigate a nonlinear problem (experiment 7.5.2) originally given by Kaps,

_y1(t) = �
�
"�1 + 2

�
y1(t) + "�1y22(t); _y2(t) = y1(t)� y2(t)� y22(t); (60)

where 0 � t � 1 and whose exact solution is y1(t) = y22(t); y2(t) = exp(�t). Equilibrium (unper-
turbed) initial conditions are given by y1(0) = y2(0) = 1. The equations exhibit increasing sti�ness as
"! 0 and, in the limit of " = 0, the system becomes an index-1 di�erential algebraic equation system.
This may be easily seen by multiplying the �rst equation by " to obtain " _y1(t) = � (1� 2") y1(t)+y

2
2(t).

Upon setting " = 0, it reduces to the algebraic equation y1(t) = y22(t). In an IMEX formulation, terms
multiplied by "�1 are integrated implicitly while all other terms are integrated explicitly.

7.2. Van der Pol's Equation

Van der Pol's (vdP) equation is an equation describing nonlinear oscillations where the solutions are
damped (ampli�ed) for large (small) values of y1,

26, 27

_y1(t) = y2(t); _y2(t) = "�1
�
(1� y1(t)

2)y2(t)� y1(t)
�
: (61)

Unperturbed initial conditions are given by y1(0) = 2; y2(0) = �0:6666654321121172. For partitioned
integration, the �rst equation is integrated explicitly while the second is integrated implicitly. Van der
Pol's equation develops a very challenging boundary layer at time T � 0:8 based on these initial
conditions. Two test cases are chosen involving di�erent time intervals: 1) 0 � t � 0:5 and 2)
0 � t � 1:5. The �rst is used to study order reduction while the second tests the error prediction
capabilities of the schemes and of the robustness of the error controllers.

7.3. Pareschi and Russo's Problem

Pareshi and Russo51 have constructed a simple test equation which contains both sti� and nonsti�
terms,

_y1(t) = �y2(t); _y2(t) = y1(t) + "�1 (sin(y1(t))� y2(t)) : (62)

Partitioning for an IMEX scheme, terms multiplied by "�1 are integrated with the implicit method
while other terms are integrated explicitly. Initial conditions may be considered in two di�erent forms.
Equilibrium initial conditions remove any contribution of the sti� term in the initial conditions. This
is accomplished with y1(0) = �=2; y2(0) = 1. Nonequilibrium, or perturbed data is speci�ed by
replacing the condition on y2 with y2(0) = 1=2.

7.4. One-Dimensional Convection-Di�usion-Reaction Problem

A simpli�ed one-dimensional version of the gas-phase, multicomponent, compressible Navier-Stokes
equations with chemical reaction is tested. The simpli�cation assumes no bulk viscosity, no thermal
di�usion or its cross e�ect, no spatial gradients of the transport coe�cients (�, �, �Di), no barodi�usion,
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ordinary di�usion is representable by an e�ective Fickian di�usion coe�cient, and no body forces are
present. With these assumptions, one must solve the system
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where the three righthand side terms are FC, FD, and FR with the subscripts C, D, and R denoting
convection, di�usion, and reaction, respectively. Also, u is the 
uid velocity, T is the temperature,
Yi are the species mass fraction, i is the species index that runs from 1 to ncs (number of chemical
species), � is the 
uid density, p is the pressure, t is time, x is the spatial direction, e0 is the total
speci�c internal energy, � is the molecular viscosity, � is the thermal conductivity, Di is the e�ective
Fickian di�usion coe�cient, hi is the partial speci�c enthalpy of species i, and _!i is the reaction rate
of species i. We consider the reaction rate only in modi�ed Arrhenius form without pressure correction
terms. Supplementary relations that are needed to solve this system are given by

e0 = u2=2� p=�+
ncsX
i=1

hiYi; hi = h0i +
Z T

Tref

cpidT; ei = hi � R0T=Wi; cp =
ncsX
i=1

cpiYi; (64)

ncsX
i=1

Yi = 1; p = �RT = �R0T=W; W =

 
ncsX
i=1

Yi=Wi

!
�1

; cp � cv = R = R0=W; (65)
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!
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�Yj
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3
5��kk ; (67)

where �prodi;k are the stoichiometric coe�cients for the products, �reacti;k are the stoichiometric coe�cients
for the reactants, �l;k are the third-body e�ciencies for the reactants, �k is the third-body e�ciency
exponent, W is the average molecular weight, Wi is the average molecular weight of species i, Ak is the
temperature prefactor for reaction k, �k is the temperature exponent for reaction k, Ek is the activation
energy for reaction k, R is the gas constant, R0 is the universal gas constant, cpi is the partial speci�c
heat capacity at constant pressure, ei is the partial speci�c internal energy, kfk is the forward speci�c
reaction rate constant of reaction k, krk is the reverse speci�c reaction rate constant of reaction k, keqk
is the equilibrium constant of reaction k, h0i is the reference partial speci�c enthalpy of species i, and
ncr is the number of chemical reaction steps.

This constitutes (ncs+2)�(nx) equations that must be solved where nx is the number of grid points.
In this work both convection and di�usion are deemed non-sti�, Fns = FC + FD, and are integrated
using the ERK method while reaction terms are treated as sti�, Fs = FR and are integrated using the
ESDIRK method. To solve this system, a Jacobian of the sti� function with respect to the integration
variables is needed. This may be done numerically or analytically. It is useful to recast the Jacobian
as

@Fs
@U

=
@Fs
@V

@V

@U
; (68)

where U = f�; �u; �e0; �Y1; �Y2; � � � ; �Y(ncs�1)gT , V = f�; u; T; Y1; Y2; � � � ; Y(ncs�1)gT ,
Fs = f0; 0; 0; _!1; _!2; � � � ; _!(ncs�1)gT .
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For the purposes of this test problem, �ve species are included: H2, O2, OH, H2O, and N2. UT

is then f�; �u; �e0; �YH2 ; �YO2 ; �YOH2 ; �YH2Og. Wherever possible, an attempt is made to match the
thermophysical properties of these molecules. A two-step reaction mechanism is employed having one
reversible and one irreversible step

H2 +O2

k1
*
)
k2

2OH;
1

2
H2 +OH

!
k3
H2O; (69)

where k1 = k2 � k3. Values of speci�c reaction rate constants, ki, used in this test problem are not
those of the supplementary relations above but have �xed AkT

�k and activation energy. In this way, one
may simply adjust sti�ness via the ratio k2=k3, yet retain temperature dependence for the purposes
of ignition. A parametric study identi�ed the maximum sti�ness (k2=k3) for which the convection-
di�usion-reaction system is stable with explicit time advancement. This value of k2=k3 is de�ned as a
sti�ness of " = 100. A sti�ness of 10x implies that "�1 = k2=k3 is 10

x times larger than its baseline
sti�ness value. Two levels of heat release were used in the study. The isoenthalpic case assumed that
the enthalpy of formation of all the species was identical. The exothermic case assumed H2, O2, N2

and OH to be identical, but H2O was adjusted to yield approximately realistic 
ame temperatures for
a hydrogen-air system. Derivatives are evaluated using sixth-order explicit stencils on a grid having
401 points. Approximately 20 grid points are contained within one shock thickness. Spatial boundary
conditions for the integration variables were speci�ed using supersonic Euler conditions at the in
ow
and extrapolation conditions at the out
ow. As gradients of 
ow variables were extremely small at the
boundaries, speci�cation error of conditions was deemed negligible.

Initial condition for the hydrodynamic variables, f�; u; Tg, are speci�ed by using a precomputed
normal-shock pro�le of air travelling at Mach 5. Each variable is nondimensionalized by its upstream
value and integration is performed on the vector U = f�; �u; �e0; �Yig. The nonequilibrium aspect of
the initial condition consists of specifying a constant spatial distribution for species mass fractions.
Stoichiometric reactant mass fractions are used. Initial values for reaction products are zero. Upon
starting the simulation, isoenthalpic or exothermic chemical reactions are abruptly activated. Inte-
grating the reacting shock wave through the spatial domain ten times with this species pro�le rapidly
results in a consumption of O2 and H2 behind the shock wave, an increase in H2O behind the shock
wave, and a small region of high OH concentration just behind the shock wave. This new pro�le for
all integration variables is the equilibrium pro�le. Although testing integration methods with nonequi-
librium initial conditions may seem somewhat contrived, 
uid dynamicists rarely know their initial
condition exactly. Oftentimes, the initial condition amounts to an educated guess, particularly inside
a 
ame.

8. Discussion

Implicit-explicit, additive Runge-Kutta methods from third- to �fth-order are presented that allow
for integration of sti� terms by an L-stable, sti�y-accurate, stage-order two, ESDIRK method while
the nonsti� terms are integrated with a traditional ERK. Satis�ed order conditions expressing splitting
error are of equal order to those of the two elemental methods. Both the ESDIRK and ARK2 methods
have vanishing stability functions for very large values of the sti� scaled eigenvalue, z[I ] ! �1. Error
control using a PID-controller and dense output for interpolation and extrapolation are also provided
for the new methods, unlike most existing methods. All constructed methods retain high stability
e�ciency in the absence of sti�ness, z[I] ! 0. Each has been optimized to minimize the leading order
ARK2 error terms, minimize the size of the Butcher coe�cients, maximize the stability envelope of the
ERK, and maximize the conservation properties with respect to �rst integrals. The methods permit
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partitioning of the ODE system by term, grid point, or equation. Numerical tests of the new schemes are
conducted on a chemical reaction inducing propagating shock wave and three two-equation singularly-
perturbed initial-value problems. The performance of these methods are compared to many existing
ARK2 methods: the (1,2,1), (2,2,2), (2,3,2), (2,3,3), (3,4,3), and (4,4,3) methods of Ascher et al.,5

LIRK3 and LIRK4 due to Calvo et al.,10 a �ve-stage, 3(2) pair of Fritzen and Wittekindt (FW53),17

ASIRK-3A from Shen and Zhong,61 the LSSIRK-3A and LSSIRK-4A methods of Yoh and Zhong,75 and
ASIRK-3A by Zhong77 as well as the SBDF methods of Ascher et al.4 Tests are conducted to determine
sti�ness leakage, e�ciency, order reduction, error control quality, and dense output performance. No
attempt is made to assess conservation properties. Characteristics of the various ARK2 are listed in
appendices B and C.

8.1 Sti�ness Leakage

An essential requirement for the viability of sti�/nonsti� IMEX schemes is that the sti�ness remains
truely separable. If this were not the case then sti�ness would leak out of the sti� terms and sti�en
the nonsti� terms. It would manifest itself as a loss in stability or a forced reduction in stepsize of the
nonsti� terms. A more expensive fully implicit approach might then be required, and hence, methods
that leak substantial sti�ness might best be avoided. We test for leakage on the reacting shock wave
problem. There are two primary a�ronts that can be made to the integrator on this problem. The �rst
is simply a very sti� reaction rate describing isoenthalpic or exothermic reactions. Secondly, one could
provide an initial condition to the 
ow�eld that is substantially di�erent from the quasi steady-state
solution. This nonequilibrium initial condition is accompanied by a strong equilibration process of the

ow�eld during the initial time steps. Ideally, this initial perturbation is damped during subsequent
time steps.

Thirty-seven existing and new IMEX ARK2 and three SBDF schemes are considered for testing.
A mild test for sti�ness leakage is to provide the integrator with an equilibrium initial condition and
an exothermic reaction rate. Time steps are speci�ed as CFL numbers where CFL = u(�t)=(�x)
and the velocity is Mach 5. Leakage generally falls into three catagories: insigni�cant, moderate, and
catastrophic. Table 8 shows that for several methods the decrease in stepsize for the nonsti� method
is in direct proportion to the increase in reaction rate sti�ness. This constitutes, in our opinion,

Method " = 100 " = 102 " = 104 " = 106

Zhong, ASIRK-3A 0:51 0:01 0:0001 0:0
Yoh, SIRK-3A 0:51 0:01 0:0001 0:0
Shen, ASIRK-3A 0:57 0:05 0:0005 0:0
Yoh LSSIRK-3A 0:52 0:05 0:0005 0:0
Yoh LSSIRK-4A 0:36 0:06 0:0006 0:0

Table 8: Examples of catastrophic leakage. Maximum CFL as a function of reaction rate sti�ness using
equilibrium initial conditions.

catastrophic leakage and a failure of the methods. They do not possess su�cient stability to be useful
in the contexts that they might reasonably be expected to apply. We do not consider these methods
further.

A more severe test of leakage is a nonequilibrium initial condition with isoenthalpic reactions. In
this case, table 9 shows that the two methods of Griepentrog19 can be broken in this rather severe
environment. Although much less severe than the leakage displayed in table 8, both methods of
Griepentrog may be inappropriate for sti� computations. More reluctantly than above, we do not
further consider these methods. It is interesting to ask why these methods have failed while other
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Method " = 100 " = 10�2 " = 10�4 " = 10�6 " = 10�8

Griepentrog (3-stage) 0:37 0:37 0:37 0:0007 0:0
Griepentrog (4-stage) 0:44 0:44 0:05 0:001 0:0

Table 9: Maximum CFL as a function of reaction rate sti�ness using nonequilibrium initial conditions
and a nonexothermic reaction rate.

methods have not. One may inspect the internal stability function magnitude of the implicit method

at stage i for z[I] ! �1; R
(i)
int(�1). Unlike SDIRK methods for which R

(i)
int(�1) = 0, ESDIRK

methods generally have nonzero values of R
(i)
int(�1). Table 10 shows that the �nal stages of both

Griepentrog's methods are noticably unstable. The IMEX Runge-Kutta methods of Ascher et al.,5

Stage 1 2 3 4 Step

Griepentrog (3-stage) +1:00 +0:366 �2:464 � �0:732
Griepentrog (4-stage) +1:00 +0:235 +1:068 �4:909 +0:000

Table 10: R
(i)
int(�1) for the implicit methods of Griepentrog.

Calvo et al.,10 Fritzen and Wittekindt,17 and the present methods exhibited little to no leakage on
either of these problems. If internal stability of the implicit method is a principal contributor to the
breakdown of these methods, it is not surprising that the zero-padded A-matrices found in the methods

of Ascher et al.5 and Calvo et al.10 do not leak sti�ness badly because R
(i)
int(�1) = 0 for all stages.

The primary concession of this approach is that the implicit method cannot have a stage-order of two
because a21 6= a22.

Our most severe leakage test for the reacting shock wave problem is to use a nonequilibrium initial
condition and exothermic chemistry. This initial condition is severe enough to cause sti�ness leakage
for all of the Runge-Kutta methods when used in a �xed stepsize mode. Table 11 documents the
progressive failure of several methods as sti�ness is increased. Comparing this to the internal stability

Method " = 100 " = 10�1 " = 10�2 " = 10�3 " = 10�4 " = 10�5 " = 10�6 " = 10�7

Ascher (2,3,3) 0:38 0:22 0:17 0:16 0:12 0:07 0:01 0:001
ARK3(2)4L[2]SA 0:57 0:28 0:20 0:19 0:14 0:07 0:06 0:001

Calvo LIRK4 0:44 0:44 0:44 0:44 0:40 0:15 0:03 0:008
ARK4(3)6L[2]SA 0:67 0:49 0:36 0:34 0:33 0:16 0:01 0:001

ARK5(4)8L[2]SA 0:43 0:41 0:10 0:05 0:03 0:001 0:00 0:000

Table 11: Maximum CFL as a function of reaction rate sti�ness using nonequilibrium initial conditions
and exothermic chemistry.

characteristics of the implicit methods in table 12, one may surmise that the ARK5(4)8L[2]SA is failing,
in part, because of marginal damping at each stage. It is also interesting that ARK3(2)4L[2]SA and
Ascher (2,3,3) wither similarly. One has strong damping at each stage while the other has strong
damping at the end of the step. LIRK4, with strong damping at each stage and the step, arguably,
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Stage 1 2 3 4 5 6 7 Step

Ascher (2,3,3) +0:000 +0:000 � � � � � �0:732
ARK3(2)4L[2]SA +1:000 �1:000 �0:806 � � � � +0:000

Calvo LIRK4 +0:000 +0:000 +0:000 +0:000 +0:000 � � +0:000
ARK4(3)6L[2]SA +1:000 �1:000 �0:774 �0:083 �0:157 � � +0:000

ARK5(4)8L[2]SA +1:000 �1:000 �0:732 �0:649 +0:856 �0:967 �0:353 +0:000

Table 12: R
(i)
int(�1) for IMEX implicit methods.

appears to endure the best. The only IMEX methods that we are aware of that can integrate this
problem in constant stepsize mode are the SBDF methods of Ascher et al.5 In table 13, they show
insigni�cant sti�ness leakage on our most severe case. Notice that as the order of accuracy increases,

Method " = 100 " = 10�2 " = 10�4 " = 10�6

SBDF2 0:20 0:17 0:10 0:09
SBDF3 0:14 0:13 0:10 0:09
SBDF4 0:11 0:10 0:10 0:09

Table 13: Maximum CFL of SBDF methods as a function of reaction rate sti�ness using nonequilibrium
initial conditions and exothermic chemistry.

the relative leakage decreases. If ARK3(2)4L[2]SA, ARK4(3)6L[2]SA, and ARK5(4)8L[2]SA are used
in conjunction with stepsize control, they are able to navigate through the strong initial transient of
this problem. Although we cannot say conclusively why the SBDF methods remain stable while all of
the IMEX ARK2 did not, it seems that both the order and stability matter. Runge-Kutta schemes

may be able to satisfy R
(i)
int(�1) = 0 at each stage but always have an overall stage order of one. The

SBDF methods are L(�)-stable to sti� eigenvalues but each step value is of design order.
In practice, simulations of chemical systems often use exothermic reaction mechanisms and mod-

erately nonequilibrium initial conditions. Once the computation is under way, each step would likely
begin with nearly unperturbed initial conditions. For DNS of hydrocarbon 
ames using a compress-
ible NSE formulation, spatial grid spacings may be of order ten microns at atmospheric pressure.11

Corresponding convective time step limits based on z[E] � 1 are of order ten nanoseconds. Under
these conditions, detailed methane-air chemical mechanisms do not introduce time scales appreciably
faster than those dictated by convective stability, implying " � 100. Larger hydrocarbon mechanisms
such as heptane-air may introduce timescales of order one femtosecond. Choosing to integrate at the
convective limit, the sti�ness would be approximately " � 10�7.

8.2 Accuracy and E�ciency

Beyond avoiding sti�ness leakage, one would like accurate and e�cient methods. Although our
focus is principally on methods of third-order accuracy and higher, we will occasionally use a �rst-order
method, Ascher (1; 2; 1), and a second-order method, Ascher (2; 3; 2), for comparison purposes. These
are chosen because their explicit methods have both non-vanishing CFL and viscous CFL numbers. At
third-order, the �rst matter is to verify the accuracy of the methods: ARK3(2)4L[2]SA, Ascher (2; 3; 3),
Ascher (3; 4; 3), Ascher (4; 4; 3), Calvo LIRK3, and Fritzen FW53. From appendix B, all methods are
formally third-order. Ascher (4; 4; 3) and Fritzen FW53 use �ve-stages overall, four of them implicit,
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while others use one or two less; hence, they might be expected to be relatively less e�cient. Using
only two implicit stages, Ascher (2; 3; 3) might be expected to be quite e�cient. Ascher (2; 3; 3) and
Ascher (3; 4; 3) have ARK2 stability functions that depend on z[E]. All schemes of Calvo et al. and
Ascher et al. have vanishing internal stability functions for the implicit method when z[I] ! �1.
Only ARK3(2)4L[2]SA and Fritzen FW53 have embedded methods, only Ascher (2; 3; 3) is not sti�y
accurate, and only ARK3(2)4L[2]SA uses a stage-order two implicit method. Fritzen FW53 may not
conserve linear �rst integrals well. Finally, values of 
 range from approximately 0:4359 to 1:0.

Accuracy and e�ciency tests are conducted using equilibrium initial conditions and exothermic
chemistry on the CDR problem. All methods exhibit third-order accuracy in the absence of sti�ness
where error is given by the L2 norm, over all grid points, of the di�erence between the computed and
\exact" solution at some �nal time. The �nal time corresponds to the movement of the shockwave
approximately 100 shock thicknesses. A quasi-exact solution is found by running ARK4(3)6L[2]SA
at an order of magnitude �ner time step than any used in the grid re�nement study. At � = 10�6,
error increases but the order of accuracy remains nearly three. Two seperate measures of e�ciency
may be considered: accuracy and stability e�ciency. Accuracy e�ciency determines the work required
to obtain some chosen error tolerance. We de�ne work as the number of implicit solves required for
the integration without regard to Newton iteration count. On error versus work plots, the �ve stage
methods of Ascher (4; 4; 3) and Fritzen FW53 are least e�cient. LIRK3 is the least accurate of the four
remaining methods on this particular problem, followed by Ascher (3; 4; 3). The most accuracy e�cient
methods are ARK3(2)4L[2]SA and Ascher (2; 3; 3), as shown in �gure 2. There was no evidence of the
coupling stability term causing a problem with Ascher (2; 3; 3). When accuracy is su�cient, one simply
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Figure 2: Error versus work for ARK3(2)4L[2]SA and Ascher (2; 3; 3) in the presence and absence of
sti�ness.

seeks the largest stable time step. The limiting time step might be due to ERK linear stability boundary
or iterative convergence problems with the Newton's method. In the absence of any sti�ness leakage
or convergence di�culties, one may compute a theoretical stability based e�ciency of the methods by
considering the inviscid and viscous CFL numbers normalized by the number of implicit stages. This
minimum work point would correspond to the upper right limit of the lines on an error versus work
plot. Table 14 compares the maximum time step per unit work for the �rst- and second-order schemes
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of Ascher et al.,5 six third-order schemes, two fourth-order schemes, and the one �fth-order method.
ARK5(4)8L[2]SA has marginal stability e�ciency for both real and imaginary nonsti� eigenvalues. Both
LIRK3 and LIRK4 may not be e�cient for relatively sti�er convective eigenvalues. In compressible

Method CFLinviscid/sI CFLviscous/sI
Ascher (1; 2; 1) 0:435 0:315

Ascher (2; 3; 2) 0:500 0:250

Ascher (2; 3; 3) 0:435 0:315
Ascher (3; 4; 3) 0:473 0:233
Ascher (4; 4; 3) 0:195 0:135
Calvo LIRK3 0:023 0:183
Fritzen FW53 0:218 0:158
ARK3(2)4L[2]SA 0:413 0:307

Calvo LIRK4 0:032 0:176
ARK4(3)6L[2]SA 0:402 0:212

ARK5(4)8L[2]SA 0:061 0:096

Table 14: Idealized stability based e�ciencies of �rst- through �fth-order methods in the absence of
sti�ness leakage.


ows, it is likely that the inviscid limit is more relevant to observed stability e�ciency. Which of these
two limits is more important during sti�ness leakage is not clear. Comparing tables 11 and 14 at
" = 100 suggests that the when sti� real eigenvalues leak, the real axis (viscous) stability e�ciency may
be more important. Using equilibrium initial conditions and exothermic chemistry, Ascher (2; 3; 3) was
found to be more stability e�cient than ARK3(2)4L[2]SA at " = 10�6; however, ARK3(2)4L[2]SA may
possess some intrinsic e�ciency advantage over Ascher (2; 3; 3) in having a smaller value of 
: 0:4359
versus 0:7887. Modi�ed Newton iteration would presumably converge faster.

At fourth-order and above, for DIRK-based IMEXmethods, we are only aware of the LIRK4 method
attributed to Calvo et al.10 and the methods that we have generated. Calvo LIRK4 was constructed
by adding an ERK to the zero-padded SDIRK4.27 Both the implicit and additive methods fully damp
sti� scaled eigenvalues. Large leading-order error of the ERK dominates the leading-order error of the
IMEX method, as shown in appendix B. The method may conserve quadratic �rst integrals poorly and
has a relatively small convective stability limit for the ERK. ARK4(3)6L[2]SA results from an extensive
examination of possible approaches to fourth-order methods and is described in section 5.

Two particular methods used C(2; i)[E], C(2; i)[I], and 
 = 1=4. One had A(5) = 0:01224 and the
other A(5) = 0:01284, but used simplifying assumption C(3; i)[I] also. With nearly identical overall
error and slightly worse internal stability values, both methods behaved nearly identically. The next
test was to compare use of simplifying assumption C(2; i)[E] with no assumption for the ERK. Leading
order error for the methods were A(5) = 0:01224 and A(5) = 0:01461, respectively. Without C(2; i)[E],
the method becomes progressively less accurate relative to the other method as sti�ness increased. To
test the e�ect of coupling stabilty, two methods were constructed employing C(2; i)[E], C(2; i)[I], and

 = 1=4. Each satis�ed p60 = p50 = p51 = 0, but the second additionally satis�ed p41 = p42 = 0. The
second method has a much smaller linear stability domain for its ERK and a principal error norm of
A(5) = 0:03542, three times that of the �rst. It appeared to be slightly less prone to sti�ness leakage
than the �rst scheme. Possibly the more highly optimized linear stability domain of the �rst method
was more susceptable to degradation. Interestingly, in the presence of sti�ness, several fourth-order
methods retain a smooth reduction in error as work is increased while others do not. Methods using
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C(2; i)[E] appear smooth while those using no simplifying assumption on their explicit method appear
rather jagged, e.g., LIRK4 and the �ve-stage, 4(2) pair that was constructed. One may also compare the
degree of error increase with the addition of sti�ness. LIRK4 has A(5) = 0:03919 and uses no simplifying
assumptions whereas one of the test methods has A(5) = 0:03542 but makes use of C(2; i)[E], C(2; i)[I].
Their nonsti� accuracy e�ciencies are quite similar but in the presence of sti�ness, LIRK4 shows not
only a more dramatic increase in error but more order reduction. Since LIRK4 does not use C(2; i)[E]

and C(2; i)[I], it is not unreasonable to attribute this di�erence to the stage-order of the implicit method.
Finally, results of various methods on this test problem often correlated with the leading-order error
term of the entire method, A(5). Figure 3 compares Calvo LIRK4 and ARK4(3)6L[2]SA at sti�ness
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Figure 3: Error versus work for ARK4(3)6L[2]SA and Calvo LIRK4 in the presence and absence of
sti�ness.

extremes showing that ARK4(3)6L[2]SA is not only more accurate but increasingly so as the sti�ness
is increased.

The only �fth-order method that we are aware of, ARK5(4)8L[2]SA, o�ered few design options.
Assumptions C(2; i)[E] and C(2; i)[I] were essential. To reduce embedded order conditions, one column
each of both Butcher arrays was replaced with zeros. Doing this made it only reasonable to include
one C(3; i) assumption; hence, C(3; i)[I ] was used along with D(1; j)[E] to reduce the number and
complexity of the remaining order conditions. Selection of 
 was problematic. Schemes were designed
using 
 = 0:145, 0:1725, 0:185, and 0:205. Larger values appeared to work better. The resulting
method, ARK5(4)8L[2]SA, has a relatively small linear stability region for its ERK. In the absence of
sti�ness it is found to be �fth-order, but in the presence of strong sti�ness it order-reduces in the same
manner as ARK4(3)6L[2]SA. Given the behavior of ARK5(4)8L[2]SA on these tests, it is probably the
best choice for situations where both mild sti�ness and tight error tolerances are present. Otherwise,
ARK4(3)6L[2]SA might best be employed. Finally, comparing e�ciency of methods of all orders at
" = 100 in �gure 4 and at " = 10�6 in �gure 5, one may conclude that �rst-order methods are ill-
advised. Ascher (2; 3; 2) can provide a much more accurate solution for an identical cost. At any level of
sti�ness, Ascher (2; 3; 2) is very stability e�cient. At tighter error tolerances, ARK4(3)6L[2]SA would
appear to be the most e�cient high-order IMEX additive Runge-Kutta method of which we are aware
for this problem.
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A limited attempt is made here to quantify the behavior and e�ciency of the multistep SBDF
schemes as they are the chief alternative to the IMEX Runge-Kutta schemes. Multistep schemes
solve only one nonlinear set of equations per time-step. As a result, they can potentially achieve
great e�ciency compared with multistep Runge-Kutta formulations. Like most ARK2 methods in
this study, the SBDF methods lack error control. Additionally, SBDF methods are not self starting,
require �xed time steps, and the implicit formulations do not possess A-stability beyond second order
accuracy. Second-, third- and fourth-order SBDF schemes of Ascher et al.5 achieve design accuracy on
the reacting shock wave problem independent of the sti�ness level, although the leading order constant
appears to depend on sti�ness. One may compare the various Runge-Kutta and SBDF methods in
terms of either accuracy or stability e�ciency. In terms of accuracy, Ascher (2; 3; 2) is substantially
more e�cient than SBDF2; however, at higher-order, the SBDF methods are more e�cient on this
problem. Figures 6 and 7 compare third- and fourth-order multistep and Runge-Kutta methods with
and without sti�ness. It should be remembered that chemical reaction rate terms generally give rise
to real eigenvalues. The maximum time step for the SBDF formulations is strongly dependent on the
location of the scaled sti� eigenvalues, and in particular, whether they fall in the unstable lobes of
the implicit BDF3 and BDF4 operators. Scaled eigenvalues on or near the negative real axis are well
suited for implicit BDF operators, while eigenvalues near the imaginary axis are not. Conversely, RK
schemes degrade in accuracy with increased sti�ness due to their lower stage-order.

8.3 Order-Reduction

Each of the four test problems in this paper are examples of singular perturbation problems.25, 27

They are ODEs characterized by a sti�ness parameter, ". As " decreases, the ODE problems gradually
transition in behavior toward index-1 DAEs. For Runge-Kutta methods, accompanying this transition
is an order-reduction phenomena where the observed convergence rates of the methods fall below the
classical order of accuracy. Some di�erential variables transition to algebraic variables, displaying
di�erent convergence rates. Hairer et al.25, 27 determine the convergence rates of SDIRK methods with
and without the sti�y accurate assumption. Global error for both di�erential and algebraic variables
are of the form �global = c1(�t)

�+ c2"(�t)
� for " � Const: (�t). Independent of sti� accuracy, SDIRK
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methods have � = q and � = qso + 1 for the di�erential variable, where q and qso are the classical and
stage-orders of the method. In the case of algebraic variables, � = qso + 1 and c2 = 0 for non-sti�y
accurate methods but � = q and � = qso in the sti�y accurate case. Practical experience shows that
the order reduction is problem dependent and may not be as severe as the theoretical estimate.

Although theoretical bounds exist for many implicit Runge-Kutta methods applied to singular
perturbation problems, little exists for IMEX methods.73 No attempt is made to theoretically predict
the form of the global error of IMEX ARK2 methods, rather we shall use the values and form articulated
above for SDIRK methods as guidance in empirically estimating the values of the respective exponents.
The ultimate goal of this order-reduction study is to establish its severity for CDR problems using sti�
chemical kinetic mechanisms. Both the vdP and CDR problems will be used to this end. A cursory
examination of the �ndings from the previous section might lead one to the incorrect conclusion that
no order-reduction exists in the CDR problem. Order reduction is easily identi�ed in simple model
problems. Thus, we begin our study with three sti� singular-perturbation model problems. We establish
the accuracy of the new methods on these problems and compare them to existing SDIRK schemes in
the literature. Attention is then focused on the reacting shock wave problem where its order-reduction
characteristics are demonstrated.

8.3a Order-Reduction on Model Problems

All previously mentioned numerical schemes were run on Kap's problem, van der Pol's equation,
and Pareschi and Russo's problem. In each case, fully implicit and IMEX formulations were compared
to assess the e�ects of partitioning. Order reduction is observed for all ARK2 schemes whose classical
order is greater than two, but is not observed for the SBDF formulations. The general nature of
the order reduction is similar for all three problems although the degree of reduction varies between
problems. Since van der Pol's equation exhibits the greatest order-reduction, it is chosen as the testbed
to compare the accuracy of all schemes. The time interval chosen for these studies is 0 � t � 0:5.
Figures 8 and 9 show representative results of a temporal re�nement study at various levels of the
sti�ness parameter � for van der Pol's equation obtained using ARK4(3)6L[2]SA. From equation (61),
y1 is the di�erential variable, while y2 transitions from a di�erential variable to an algebraic variable
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Figure 9: Sti� (algebraic) error in the van
der Pol equation as calculated with the
ARK4(3)6L[2]SA scheme.

as the sti�ness is increased. The convergence rate of the di�erential variable is nearly fourth-order, its
classical order, and is reasonably smooth. Convergence behavior of the algebraic variable, however, is
jagged and departs signi�cantly from the expected design accuracy. This departure from the design
accuracy occurs most dramatically for intermediate values of the sti�ness parameter ".

In �gures 10, 11, and 12, the convergence rates of the ARK3(2)4L[2]SA, ARK4(3)6L[2]SA, and
ARK5(4)8L[2]SA methods on van der Pol's equation are plotted versus the sti�ness parameter ".
Convergence rates are calculated by a least-squares �t of the data at each " presented in �gure 8. This
procedure is at some variance with the fact that error versus stepsize lines are generally composed of
two lines of di�ering slopes. It is adopted, nonetheless, because the dual slope lines are not discernable
from the jagged data. ESDIRK method results, for which theoretical estimates of order reduction exist,
are included for comparison purposes along with the IMEX values. Certain general trends appeared
across each test problem. At values of " � 100, the observed convergence rate was equal to the classical
order of each method.

All curves show order reduction to some degree for intermediate values of the parameter ". The
"! 0 limit is again characterized by a uniform convergence rate, although it is not generally the design
rate of the method. Both formulations, the ESDIRK and the IMEX, order-reduce for the algebraic
variables considerably more than for the di�erential variables. The general trends presented in �gures
10, 11, and 12 are summarized in table 15 along with the Ascher (2; 3; 3) scheme, Fritzen FW53, and
Calvo LIRK3 and LIRK4. Based on results from the three model test problems, we determine the
leading order truncation terms for each method for the cases where " � Const: (�t). In practice, this
is an awkward and inexact procedure due to the extreme jaggedness of the convergence plots. With
this in mind, some methods showed problem dependent convergence behavior. The exact nature of a
method's order reduction depends on the relative size of the parameters " and �t. The " � �t limit
yields the "(�t)� contribution to the convergence rate for the method (see �gure 10 where " = 10�8).
The " � �t limit gives the classical order for all methods as " is not a small parameter in this case.
Onset of order reduction is observed for the cases where " � �t. By �xing " and varying �t in the
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Method ESDIRK ESDIRK IMEX IMEX
Di�erential Algebraic Di�erential Algebraic

Ascher (2,3,3) (�t)3 + "(�t)2 (�t)2 + "(�t)1 (�t)3 + "(�t)2 (�t)2 + "(�t)1

Calvo LIRK3 (�t)3 + "(�t)2 (�t)3 + "(�t)1 (�t)3 + "(�t)2 (�t)2 + "(�t)1

Fritzen (�t)3 + "(�t)2 (�t)3 + "(�t)1 (�t)3 + "(�t)2 (�t)3 + "(�t)1

ARK3(2)4L[2]SA (�t)3 + "(�t)3 (�t)3 + "(�t)2 (�t)3 + "(�t)2 (�t)2 + "(�t)1

Calvo LIRK4 (�t)4 + "(�t)2 (�t)4 + "(�t)1 (�t)4 + "(�t)2 (�t)2 + "(�t)1

ARK4(3)6L[2]SA (�t)4 + "(�t)3 (�t)4 + "(�t)2 (�t)4 + "(�t)2 (�t)3 + "(�t)1

ARK5(4)8L[2]SA (�t)4 + "(�t)3 (�t)4 + "(�t)2 (�t)4 + "(�t)2 (�t)3 + "(�t)1

Table 15: Estimated convergence rates of di�erential and algebraic variables in �global = c1(�t)� +
c2"(�t)

� form for several ESDIRK and IMEX ARK2 methods for " � Const: (�t).
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" � �t limit, a careful study of order-reduction may be conducted. Typically the convergence rate for
these studies has a slope discontinuity, that can be used to identify the leading order error terms. For
the IMEX operators, convergence behavior is erratic in this limit, often not monitonically decreasing
with time step. Convergence behavior for the third- and fourth-order implicit schemes, presented in
table 15, agrees with the theoretical estimates for SDIRK schemes given above. Incorporating a stage-
order of two in the implicit scheme does not translate into higher order-of-accuracy for the di�erential
variables for any of the IMEX schemes, but it increases the convergence rate for the ESDIRK alone.
Also, the increased stage order increases the accuracy of the algebraic variable in the fourth- and �fth-
order cases. The 4th-order asymptotic convergence of scheme ARK5(4)8L[2]SA and its ESDIRK makes
the overall behavior of the �fth-order scheme very similar to that of the 4th-order scheme. We o�er no
explanation for this behavior.

8.3b Order-Reduction on CDR problems

We now extend the previous study on order reduction to CDR problems using the reaction inducing,
propagating shock wave problem. Computations use exothermic chemistry and equilibrium initial
conditions. As the reaction rate is introducing the sti�ness and only the species continuity equations
explicitly contain the reaction rate, we focus on these equations. From Eq. (63), the species equations
are given by

@(�Yi)

@t
= �@(�uYi)

@x
+ �Di

@2Yi
@x2

+ _!i = Fns;i + _!i; (70)

where Yi = fYH2 ; YO2 ; YH2O; YOH; YN2g and Fns;i denotes the sum of convective and di�usive terms for
species i. Because of overall continuity, it is not necessary to solve a di�erential equation for YN2 .
Nonsti� convective and di�usive terms are integrated with the ERK while all reaction rate terms are
integrated by the ESDIRK. Using concentrations, Ci = �Yi=Wi, and our simpli�ed reaction mechanism,
the full species equations appear as
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where " = k3=k2 and � is some real constant. Fast reactions involve the term 1
" and are present in

the reaction terms for the species H2, O2 and OH. Variable O2 is purely a fast reaction. The other
two variables, H2 and OH, involve both fast and slow reactions, while the variable H2O is entirely
a slow variable. In general, it is di�cult to identify slow (di�erential) and fast (algebraic) variables
and hence treat each appropriately. For this simpli�ed reaction system, however, the di�erential and
algebraic variables can readily be identi�ed. De�ning the new variables �1 = WO2YH2 �WH2YO2 and
�2 = WO2YOH + 2WOHYO2 , the system may now be written as
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With this new system, it is more clearly seen that at high levels of sti�ness, YO2 will be an algebraic
variable while �1, YH2O, �2, and YN2g are the di�erential variables.

34



Log 10(ε)
C

o
n
ve

rg
e

n
ce

R
a

te
-6 -5 -4 -3 -2 -1 01

2

3

4

5

6

7
ARK3(2)4L[2]SA ; Differential Variable
ARK3(2)4L[2]SA ; Algebraic Variable
ARK4(3)6L[2]SA ; Differential Variable
ARK4(3)6L[2]SA ; Algebraic Variable
ARK5(4)8L[2]SA ; Differential Variable
ARK5(4)8L[2]SA ; Algebraic Variable

Figure 13: Convergence rates of di�erential and algebraic variables on CDR problem using the new
ARK2 methods.

Figure 13 compares the convergence behavior of the three new IMEX ARK2 schemes on the reacting
shock wave problem. A representative di�erential variable, H2O, and the algebraic variable, O2, are
presented for ARK3(2)4L[2]SA, ARK4(3)6L[2]SA, and ARK5(4)8L[2]SA. Convergence rates are again
determined from a least-squares �t of a convergence study at each value of the parameter ". Interme-
diate values of the parameter ", again, produce the most order-reduction in both the di�erential and
algebraic variables.

The algebraic variable order-reduction in this CDR problem is remarkably similar to that observed
in all three singular perturbation model problems. This degradation in accuracy for the algebraic
variable, however, does not dramatically degrade the overall accuracy of the CDR problem when error
is considered as the L2 norm of the di�erence between the computed and exact solutions over all grid
points. Temperature, which is a combination of di�erential and algebraic variables, converged at a rate
slightly lower than the di�erential variables. As sti� modes are unnecessary to resolve for accuracy
purposes and algebraic variables arise from high sti�ness, it may not be surprising that the lower
convergence rates of algebraic variables appear to weakly a�ect temporal error. Another explanation
for the benign role of order-reduction in the present CDR problem is that the one algebraic variable
is only weakly coupled to the rest of the system and does not greatly in
uence the solution accuracy
of the other six variables. It is not clear if this may be generalized to all or most reacting 
ows,
however, ARK2 schemes are likely to experience signi�cant order-reduction on problems where the
algebraic component of the error plays a dominant role. In this scenerio, the SBDF schemes, which do
not experience order-reduction, are likely to have a clear e�ciency advantage over the IMEX Runge-
Kutta schemes provided the sti� eigenvalues are predominately real. A case by case study is probably
necessary to de�nitively answer whether order-reduction is an important issue.

8.4 Error Control

Choosing a practical error controller for the current IMEX methods is problematic. Advanced
controllers designed for explicit and implicit methods are constructed based on di�erent criteria. IMEX
schemes, being combinations of each, represent a new challenge for error controllers. Beyond this,
with increasing sti�ness, controllers additionally confront order-reduction as well as emerging algebraic
variables. With this in mind, we test four general appoaches: the I-, PI-, PC, and PID-controllers.63

The I-controller is appropriate for either implicit or explicit methods. PI- and PID-controllers are
advances over I-controllers for explicit methods. PC-controllers have been designed for the unique
dynamics of an implicit method.
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Van der Pol's equation provides a challenging test for the error control capabilities of the new
additive schemes. Over one period, the vdP solution has two temporal boundary layers having thickness
related to ��1. To maintain accuracy, the embedded method and controller must sense the layers and
adjust the time step accordingly. Signi�cant variations were observed between di�erent controllers. For
example, the PC-controller is ine�ective. It produced a strong step-change instability characterized
by large time-step changes in portions of the temporal cycle where no adjustments were necessary.
Controllers designed for implicit methods appear inappropriate. Performance of the simple I-controller
is better, yet marginal. Both the PI- and PID-controllers are able to guide the integration through the
temporal boundary layer with reasonable e�ciency. With better SC-stability properties and similar
characteristic roots, the PID-controller behaved best. As the PI- and PID-controllers are designed for
the dynamics of explicit methods, it appears that controlling the IMEX method on these problems
is largely a function of controlling the explicit method. Further, it appears that the behavior of the
controller at the stability boundary is most important. That these controllers worked well is surprising
considering that in the presence of large sti�ness, the algebraic variables dominate solution accuracy in
the three model problems and order reduction is present. The generality of these �ndings is not clear.

In a second test of the error controllers, the propagating reacting shock wave problem is computed.
Testing methods on this problem is rather di�cult because the 
ow contains no transients, yet if one
speci�es an exothermic reaction system, a nonequilibrium initial condition, and " = 10�6, a highly
transient problem ensues. This same problem is severe enough to break all ARK2 schemes when used
in �xed stepsize mode and large sti�ness. Conclusions are similar to those drawn from van der Pol's
equation. The only controllers capable of guiding the integration out of the 
ow equilibration phase
at all sti�nesses are the PI- and PID-controllers. At low and high sti�ness, requested and resultant
error are well correlated. Sti�ness a�ects the relation of predicted and actual error but the controller
remains useful and is remarkably insensitive to the sti�ness even in the case of order reduction. It
is less surprising that the explicit-based controllers perform adequately on the CDR problem as the
algebraic variables are of secondary importance to solution accuracy.

We do not o�er any theoretical explanation why the PI- and PID-controllers work fairly well on
these problems. To maintain constant controller gain during order-reduction, p should presumably be
reduced. It is not reduced in these tests. Perhaps the essential feature of controlling IMEX methods is
coping with scaled eigenvalues at the stability boundary of the explicit method, a task best suited to
the PID-controller.

8.5 Dense Output

The dense output for the three new schemes is tested on the reacting shockwave problem. An
equilibrated solution is established at a time, t = tref at " = 100, and is used as the initial condition for
the study. The initial condition is then advanced one time step to �ll all function registers. Interpolation
and extrapolation are done at points preceding and following tref + �t. The dense output is then
compared to an \exact" solution obtained with a separate run beginning with the initial condition
using �t=10 stepsizes and run to the dense output times. A re�nement study is performed using one
timestep in the variable �t to determine the local order of accuracy of the dense output. Note that
the nature of the re�nement study in the variable �t returns the local error of the dense output or
the global error plus one. Table 16 summarizes the observed local errors, ��t, and convergence rates
from a study using the third-order (p� = 3) formula associated with the ARK4(3)6L[2]SA scheme. The
interpolated and extrapolation values are at 1

2(�t) and
3
2(�t), respectively.

Design order is asymptotically achieved in both modes. Note that the extrapolated data are one and
one half orders less accurate than the interpolated data although their respective orders-of accuracy
are similar. The e�cacy of extrapolation decays rapidly with distance. Similar results showing design
order dense output were obtained for the ARK3(2)4L[2]SA and ARK5(4)8L[2]SA schemes. A �nal test
of the dense output was performed on both van der Pol's and the CDR equations. Extrapolation mode
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was used to predict the starting values of the newton iteration from data at the previous timestep.
A uniform speedup of the iteration was observed at all levels of sti�ness, " = 100 through " = 10�6,
indicating the e�cacy of the extrapolation.

Table 16: Convergence rate and local error of the p� = 3 dense output for interpolation and extrapo-
lation as calculated with the ARK4(3)6L[2]SA scheme.

�t �(�t);Int Order �(�t);Ext Order

0.9 -5.218 -3.599
0.6 -5.790 3.241 -4.229 3.579
0.5 -6.070 3.541 -4.525 3.745
0.4 -6.426 3.679 -4.896 3.823
0.3 -6.900 3.791 -5.382 3.891
0.2 -7.583 3.879 -6.077 3.945
0.1 -8.770 3.944 -7.275 3.981

9. Conclusions

Additive Runge-Kutta (ARK) methods are investigated for application to the spatially discretized
one-dimensional convection-di�usion-reaction (CDR) equations. First, accuracy, stability, conserva-
tion, and dense-output are considered for the general case when N di�erent Runge-Kutta methods
are grouped into a single composite method. Comparing the N = 3 and N = 2 cases for CDR ap-
plications, N = 2 methods are chosen. Then, implicit-explicit, N = 2, additive Runge-Kutta (ARK2)
methods from third- to �fth-order are presented. Each allows for integration of sti� reactive terms
by an L-stable, sti�y-accurate ESDIRK method while the nonsti� convection and di�usion terms are
integrated with a traditional ERK method. Coupling error terms are minimized by selecting identical
abscissae and scheme weights for each method and are of equal order to those of the elemental methods.
Both ARK2 and ESDIRK methods have vanishing stability functions for very large values of the sti�
scaled eigenvalue, z[I] ! �1, and retain high stability e�ciency in the absence of sti�ness, z[I] ! 0.
Extrapolation-type stage-value predictors are provided based on dense-output formulae. Dense output
stability functions have minimized values for � > 1 and z[I ] ! �1. Optimized methods minimize
both leading order ARK2 error terms and Butcher coe�cient magnitudes as well as maximize con-
servation properties. Numerical tests of the new schemes on a CDR problem show negligible sti�ness
leakage and near classical order convergence rates. Third- and fourth-order SBDF methods are slightly
more e�cient than the IMEX ARK2 schemes but do not include error estimation and stepsize control.
Tests on three simple singular perturbation problems reveal similar and predictable order reduction
for the Runge-Kutta methods but no order reduction for the SBDF methods. Order reduction of
ARK2 schemes is worst at intermediate sti�ness levels. Estimated convergence rates for di�erential
and algebraic variables generally coincide with that predicted by theory. A reinspection of di�erential
and algebraic variables on the CDR problem shows similar behavior. Error control is best managed
with a PID-controller, indicating that ERK stability is the overriding issue in controlling error. Dense
output is useful both in interpolation and extrapolation. While results for the �fth-order method are
disappointing, both the new third- and fourth-order methods are at least as e�cient as existing ARK2

methods while o�ering error control and stage-value predictors.
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Appendix A - Runge-Kutta Order Conditions

Equations of conditions for 1-trees up to sixth-order accuracy are given by
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General equations of condition for 2-trees up to �fth-order for one root node type are provided below.
Coe�cients of the two methods are distinguished by case; (aij ; bi; ci) and (Aij ; Bi; Ci). Only half of the
actual order conditions are given. The other half may be obtained by taking each condition below and
replacing each bi with Bi.
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5
Ps

i;j;k=1
biaijcjaikck 5 3 2 20

5
Ps

i;j;k=1
biaijcjAikck 5 6 1 20

5
Ps

i;j;k=1
biaijcjaikCk 5 6 1 20

5
Ps

i;j;k=1
biaijcjAikCk 5 6 1 20

5
Ps

i;j;k=1
biAijcjAikck 5 3 2 20

5
Ps

i;j;k=1
biaijCjaikCk 5 3 2 20

5
Ps

i;j;k=1
biaijCjAikck 5 6 1 20

5
Ps

i;j;k=1
biAijcjAikCk 5 6 1 20

5
Ps

i;j;k=1
biAijCjaikCk 5 6 1 20

5
Ps

i;j;k=1
biAijCjAikCk 5 3 2 20

5
Ps

i;j=1
biciaijc

2
j 5 4 2 15

5
Ps

i;j=1
biCiaijc

2
j

5 4 2 15

5
Ps

i;j=1
biciAijc

2
j

5 4 2 15

5
Ps

i;j=1
biciaijC

2
j

5 4 2 15

5
Ps

i;j=1
biCiAijc

2
j

5 4 2 15

5
Ps

i;j=1
biCiaijC

2
j

5 4 2 15

5
Ps

i;j=1
biciAijC

2
j

5 4 2 15

5
Ps

i;j=1
biCiAijC

2
j

5 4 2 15

5
Ps

i;j=1
biciaijcjCj 5 8 1 15

5
Ps

i;j=1
biCiaijcjCj 5 8 1 15

5
Ps

i;j=1
biciAijcjCj 5 8 1 15

5
Ps

i;j=1
biCiAijcjCj 5 8 1 15

5
Ps

i=1
biaijc

3
i

5 1 6 20

5
Ps

i=1
biaijc

2
i
Ci 5 3 2 20

5
Ps

i=1
biaijciC

2
i

5 3 2 20

5
Ps

i=1
biaijC

3
i

5 1 6 20

5
Ps

i=1
biAijc

3
i

5 1 6 20

5
Ps

i=1
biAijc

2
i
Ci 5 3 2 20

5
Ps

i=1
biAijciC

2
i

5 3 2 20

5
Ps

i=1
biAijC

3
i

5 1 6 20

5
Ps

i;j;k=1
biciAijajkck 5 4 6 30

5
Ps

i;j;k=1
biciAijajkCk 5 4 6 30

5
Ps

i;j;k=1
biciAijAjkck 5 4 6 30

5
Ps

i;j;k=1
biciAijAjkCk 5 4 6 30

5
Ps

i;j;k=1
biciaijajkck 5 4 6 30

5
Ps

i;j;k=1
biciaijajkCk 5 4 6 30

5
Ps

i;j;k=1
biciaijAjkck 5 4 6 30

Order
Ps

i=1
bi�i(t) �(t) �(t) �(t) 
(t)

5
Ps

i;j;k=1
biciaijAjkCk 5 4 6 30

5
Ps

i;j;k=1
biCiAijajkck 5 4 6 30

5
Ps

i;j;k=1
biCiAijajkCk 5 4 6 30

5
Ps

i;j;k=1
biCiAijAjkck 5 4 6 30

5
Ps

i;j;k=1
biCiAijAjkCk 5 4 6 30

5
Ps

i;j;k=1
biCiaijajkck 5 4 6 30

5
Ps

i;j;k=1
biCiaijajkCk 5 4 6 30

5
Ps

i;j;k=1
biCiaijAjkck 5 4 6 30

5
Ps

i;j;k=1
biCiaijAjkCk 5 4 6 30

5
Ps

i;j;k=1
biaijcjajkck 5 3 6 40

5
Ps

i;j;k=1
biaijcjAjkck 5 3 6 40

5
Ps

i;j;k=1
biaijcjajkCk 5 3 6 40

5
Ps

i;j;k=1
biaijcjAjkCk 5 3 6 40

5
Ps

i;j;k=1
biaijCjajkck 5 3 6 40

5
Ps

i;j;k=1
biaijCjAjkck 5 3 6 40

5
Ps

i;j;k=1
biaijCjajkCk 5 3 6 40

5
Ps

i;j;k=1
biaijCjAjkCk 5 3 6 40

5
Ps

i;j;k=1
biAijcjajkck 5 3 6 40

5
Ps

i;j;k=1
biAijcjAjkck 5 3 6 40

5
Ps

i;j;k=1
biAijcjajkCk 5 3 6 40

5
Ps

i;j;k=1
biAijcjAjkCk 5 3 6 40

5
Ps

i;j;k=1
biAijCjajkck 5 3 6 40

5
Ps

i;j;k=1
biAijCjAjkck 5 3 6 40

5
Ps

i;j;k=1
biAijCjajkCk 5 3 6 40

5
Ps

i;j;k=1
biAijCjAjkCk 5 3 6 40

5
Ps

i;j;k=1
biaijajkc

2
k

5 1 2 60

5
Ps

i;j;k=1
biaijAjkc

2
k

5 1 2 60

5
Ps

i;j;k=1
biAijajkc

2
k

5 1 2 60

5
Ps

i;j;k=1
biAijAjkc

2
k

5 1 2 60

5
Ps

i;j;k=1
biaijajkC

2
k

5 1 2 60

5
Ps

i;j;k=1
biaijAjkC

2
k

5 1 2 60

5
Ps

i;j;k=1
biAijajkC

2
k

5 1 2 60

5
Ps

i;j;k=1
biAijAjkC

2
k

5 1 2 60

5
Ps

i;j;k=1
biaijajkckCk 5 2 1 60

5
Ps

i;j;k=1
biaijAjkckCk 5 2 1 60

5
Ps

i;j;k=1
biAijajkckCk 5 2 1 60

5
Ps

i;j;k=1
biAijAjkckCk 5 2 1 60

5
Ps

i;j;k;l=1
biaijajkaklcl 5 1 1 120

5
Ps

i;j;k;l=1
biaijajkAklcl 5 1 1 120

5
Ps

i;j;k;l=1
biaijajkaklCl 5 1 1 120

5
Ps

i;j;k;l=1
biaijajkAklCl 5 1 1 120

5
Ps

i;j;k;l=1
biaijAjkaklcl 5 1 1 120

5
Ps

i;j;k;l=1
biaijAjkAklcl 5 1 1 120

5
Ps

i;j;k;l=1
biaijAjkaklCl 5 1 1 120

5
Ps

i;j;k;l=1
biaijAjkAklCl 5 1 1 120

5
Ps

i;j;k;l=1
biAijajkaklcl 5 1 1 120

5
Ps

i;j;k;l=1
biAijajkAklcl 5 1 1 120

5
Ps

i;j;k;l=1
biAijajkaklCl 5 1 1 120

5
Ps

i;j;k;l=1
biAijajkAklCl 5 1 1 120

5
Ps

i;j;k;l=1
biAijAjkaklcl 5 1 1 120

5
Ps

i;j;k;l=1
biAijAjkAklcl 5 1 1 120

5
Ps

i;j;k;l=1
biAijAjkaklCl 5 1 1 120

5
Ps

i;j;k;l=1
biAijAjkAklCl 5 1 1 120
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Appendix B - ERK/IRK Additive Runge-Kutta Methods

Author/Scheme Year (s; sI) (qE; qI; qC ; q) qIso

EA(q
E+1) IA(q
I+1) CA(q
C+1) A(q+1) A-Stable R(�1) b
[E]

i

= b
[I]

i

jM [E;I] j Maxfa
[I]

ii
g

EA(q
E+2) IA(q
I+2) CA(q
C+2) A(q+2) a
[I]

sj

= b
[I]

j

(�; �v) c
[E]

i

= c
[I]

i

D

ARK5(4)8L[2]SA 2001 (8; 7) (5; 5; 5; 5) 2 0:002945 0:001680 0:006110 0:006988 yes 0:00 yes 13:443 0:2050

0.008705 0.002770 0.01229 0.01531 yes (0:43; 0:67) yes 14:69

ARK4(3)6L[2]SA 2001 (6; 5) (4; 4; 4; 4) 2 0:004470 0:003401 0:01087 0:01224 yes 0:00 yes 0:6684 0:2500

0.007414 0.005405 0.07397 0.07454 yes (2:01; 1:06) yes 1:059

Calvo LIRK4 1999 (6; 5) (4; 4; 4; 4) 1 0:03012 0:002504 0:02494 0:03919 yes 0:00 yes 112:6 0:2500

0.03031 0.004511 0.07619 0.08213 yes (0:16; 0:88) yes 14:17

ARK3(2)4L[2]SA 2001 (4; 3) (3; 3; 3; 3) 2 0:02236 0:03663 0:05802 0:07217 yes 0:00 yes 1:203 0:4359

0.02373 0.07870 0.09737 0.1274 yes (1:24; 0:92) yes 1:038

Calvo LIRK3 1999 (4; 3) (3; 3; 3; 3) 1 0:05691 0:02970 0:07704 0:1003 yes 0:00 yes 1:599 0:4359

0.07123 0.06535 0.1497 0.1767 yes (0:07; 0:55) yes 1:989

Ascher (2,3,3) 1997 (3; 2) (3; 3; 3; 3) 1 0:1019 0:1270 0:1270 0:2064 yes �0:732(1 + z[E]) yes 0:2887 0:7887

0.06695 0.2443 0.2171 0.3336 no (0:87; 0:63) yes 0:7887

Ascher (3,4,3) 1997 (4; 3) (3; 3; 3; 3) 1 0:07595 0:02970 0:06311 0:1031 yes 0:106z[E] yes 1:407 0:4359

0.08921 0.06535 0.1248 0.1667 yes (1:42; 0:70) yes 1:208

Ascher (4,4,3) 1997 (5; 4) (3; 3; 3; 3) 1 0:09053 0:03165 0:1318 0:1630 yes 0:00 no 2:969 0:5000

0.08623 0.06994 0.2437 0.2678 yes (0:78; 0:54) yes 1:750

Fritzen 1997 (5; 4) (3; 3; 3; 3) 1 0:07217 0:07082 0:1707 0:1984 yes 0:00 no 2:634 � 10�9 1:0000

0.05649 0.1512 0.3238 0.3618 yes (0:87; 0:63) yes 1:000

Griepentrog 1978 (3; 2) (3; 3; 3; 3) 1 0:05893 0:1312 0:1270 0:1918 yes �0:732(1 + z[E]) yes 0:7571 0:7887

0.08038 0.2910 0.2869 0.4165 no (0:87; 0:63) yes 2:943

Griepentrog 1978 (4; 3) (4; 3; 3; 3) 1 0:01267 0:07426 0:06926 0:1015 yes �0:123z[E] yes 0:6047 0:4359

0.01444 0.1481 0.09834 0.1782 no (1:42; 0:70) yes 3:615

Yoh SIRK-3A 1998 (3; 3) (3; 3; 2; 2) 1 0:08184 0:09220 0:3853 0:3853 yes 0:00 yes 0:3131 0:7500

0.06176 0.1791 0.6189 0.6310 no (0:87; 0:63) no 1:179

Yoh LSSIRK-4A 1998 (4; 4) (3; 3; 2; 2) 1 0:1319 2:341 0:3770 0:3770 no �0:456 yes 2:926 5:656

0.1169 22.46 4.617 5.178 no (0:71; 0:46) no 5:656

Yoh LSSIRK-3A 1997 (3; 3) (3; 3; 2; 2) 1 0:04398 0:007427 0:1039 0:1039 no 2:45 yes 0:2940 0:6533

0.04551 0.008368 0.1683 0.1741 no (0:87; 0:63) no 0:9375

Ascher (1,2,2) 1997 (2; 1) (2; 2; 3; 2) 1 0:1718 0:09317 0:05893 0:1954 yes �1:0000 yes 0:5000 0:5000

0.1398 0.08839 0.08079 0.1755 no (0:00; 0:50) yes 1:000

Ascher (2,2,2) 1997 (3; 2) (2; 2; 2; 2) 1 0:1911 0:04168 0:02860 0:1976 yes �0:7071z[E] no 0:7071 0:2929

0.1424 0.05790 0.1150 0.1920 yes (0:00; 0:50) yes 1:707

Ascher (2,3,2) 1997 (3; 2) (2; 2; 3; 2) 1 0:01011 0:04168 0:0 0:04289 yes 0:943z[E] yes 0:2929 0:2929

0.06223 0.05790 0.1011 0.08560 yes (0:87; 0:63) yes 1:000

Zhong ASIRK-2A 1996 (2; 2) (2; 2; 2; 2) 1 0:1863 0:04295 0:05893 0:2001 yes 0:00 yes 0:2041 0:3333

0.1443 0.04443 0.2045 0.2542 no (0:00; 0:50) no 1:000

Zhong ASIRK-3A 1996 (3; 3) (3; 3; 2; 2) 1 0:08184 0:1110 0:2676 0:2676 yes 0:00 yes 0:4716 0:9511

0.06176 0.2423 0.4289 0.4506 no (0:87; 0:63) no 1:258

Shen ASIRK-3A 1996 (4; 4) (3; 3; 2; 2) 1 0:03792 0:1452 0:1078 0:1078 yes 0:00 yes 0:2871 1:1748

0.04231 0.3471 0.4338 0.5572 no (0:92; 0:69) no 1:781
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Appendix C - ERK/IRK Additive Runge-Kutta Embedded
Methods

qE pE EÂ(p
E+1) EB(p

E+2) EC(p
E+2) EE(p

E+2)

Author/Scheme Year qI pI I Â(p
I+1) IB(p

I+2) IC(p
I+2) IE(p

I+2) A � Stable jR̂(�1)j b̂
[E]
i

= b̂
[I]
i

qC pC CÂ(p
C+1) CB(p

C+2) CC(p
C+2) CE(p

C+2) aIsj = b̂Ij (�̂; �̂v) jM̂ [E;I] j

q p Â(p+1) B(p+2) C(p+2) E(p+2)

5 4 0:001930 1:600 1:043 1:526

ARK5(4)8L[2]SA 2001 5 4 0:00004887 36:80 2:887 34:37 yes +0:200 + 0:286z[E] yes
5 4 0:001468 4:453 1:376 4:163 no (0:22; 1:07) 14:209
5 4 0:002425 3:072 1:177 2:881

4 3 0:001540 4:100 1:358 2:902

ARK4(3)6L[2]SA 2001 4 3 0:0008243 5:479 1:381 4:126 yes �0:150 � 0:040z[E] yes
4 3 0:003145 4:459 1:386 3:456 no (1:94; 1:10) 0:7341
4 3 0:003598 4:455 1:381 3:401

3 2 0:01602 1:182 0:821 1:396

ARK3(2)4L[2]SA 2001 3 2 0:008783 3:058 1:641 4:171 yes �0:075 � 0:087z[E] yes
3 2 0 � � � no (1:12; 0:87) 0:8741
3 2 0:01827 0:01827 1:068 3:951
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Appendix D - Additive Runge-Kutta Scheme Coe�cients

ARK3(2)4L[2]SA - ERK

0 0 0 0 0

1767732205903
2027836641118

1767732205903
2027836641118 0 0 0

3
5

5535828885825
10492691773637

788022342437
10882634858940 0 0

1 6485989280629
16251701735622

�4246266847089
9704473918619

10755448449292
10357097424841 0

bi
1471266399579
7840856788654

�4482444167858
7529755066697

11266239266428
11593286722821

1767732205903
4055673282236

b̂i
2756255671327
12835298489170

�10771552573575
22201958757719

9247589265047
10645013368117

2193209047091
5459859503100

ARK3(2)4L[2]SA - ESDIRK

0 0 0 0 0

1767732205903
2027836641118

1767732205903
4055673282236

1767732205903
4055673282236

0 0

3
5

2746238789719
10658868560708

�640167445237
6845629431997

1767732205903
4055673282236

0

1 1471266399579
7840856788654

�4482444167858
7529755066697

11266239266428
11593286722821

1767732205903
4055673282236

bi
1471266399579
7840856788654

�4482444167858
7529755066697

11266239266428
11593286722821

1767732205903
4055673282236

b̂i
2756255671327
12835298489170

�10771552573575
22201958757719

9247589265047
10645013368117

2193209047091
5459859503100

ARK3(2)4L[2]SA - Second-Order Dense Output

b�ij i = 1 i = 2 i = 3 i = 4

j = 1 +4655552711362
22874653954995

�18682724506714
9892148508045

34259539580243
13192909600954

584795268549
6622622206610

j = 2 �215264564351
13552729205753

17870216137069
13817060693119

�28141676662227
17317692491321

2508943948391
7218656332882

ARK4(3)6L[2]SA - ERK

0 0 0 0 0 0 0

1
2

1
2 0 0 0 0 0

83
250

13861
62500

6889
62500 0 0 0 0

31
50

�116923316275
2393684061468

�2731218467317
15368042101831

9408046702089
11113171139209

0 0 0

17
20

�451086348788
2902428689909

�2682348792572
7519795681897

12662868775082
11960479115383

3355817975965
11060851509271 0 0

1 647845179188
3216320057751

73281519250
8382639484533

552539513391
3454668386233

3354512671639
8306763924573

4040
17871

0

bi
82889
524892

0 15625
83664

69875
102672

�2260
8211

1
4

b̂i
4586570599
29645900160 0 178811875

945068544
814220225
1159782912

�3700637
11593932

61727
225920
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ARK4(3)6L[2]SA - ESDIRK

0 0 0 0 0 0 0

1
2

1
4

1
4 0 0 0 0

83
250

8611
62500

�1743
31250

1
4 0 0 0

31
50

5012029
34652500

�654441
2922500

174375
388108

1
4 0 0

17
20

15267082809
155376265600

�71443401
120774400

730878875
902184768

2285395
8070912

1
4 0

1 82889
524892 0 15625

83664
69875
102672

�2260
8211

1
4

bi
82889
524892 0 15625

83664
69875
102672

�2260
8211

1
4

b̂i
4586570599
29645900160

0 178811875
945068544

814220225
1159782912

�3700637
11593932

61727
225920

ARK4(3)6L[2]SA - Third-Order Dense Output

b�ij i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

j = 1 6943876665148
7220017795957 0 7640104374378

9702883013639
�20649996744609
7521556579894

8854892464581
2390941311638

�11397109935349
6675773540249

j = 2 �54480133
30881146 0 �11436875

14766696
174696575
18121608

�12120380
966161

3843
706

j = 3 6818779379841
7100303317025 0 2173542590792

12501825683035
�31592104683404
5083833661969

61146701046299
7138195549469

�17219254887155
4939391667607

ARK4(3)6L[2]SA - Second-Order Dense Output

b�ij i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

j = 1 5701579834848
6164663940925 0 13131138058924

17779730471019
�28096677048929
11161768239540

42062433452849
11720557422164

�25841894007917
14894670528776

j = 2 �7364557999481
9602213853517 0 �6355522249597

11518083130066
29755736407445
9305094404071

�38886896333129
10063858340160

22142945955077
11155272088250

ARK5(4)8L[2]SA - Third-Order Dense Output

b�ij i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8

j = 1 �17674230611817
10670229744614 0 0 65168852399939

7868540260826
15494834004392
5936557850923

�99329723586156
26959484932159

�19024464361622
5461577185407

�6511271360970
6095937251113

j = 2 43486358583215
12773830924787 0 0 �91478233927265

11067650958493
�79368583304911
10890268929626

�12239297817655
9152339842473

115839755401235
10719374521269

5843115559534
2180450260947

j = 3 �9257016797708
5021505065439 0 0 26096422576131

11239449250142
92396832856987
20362823103730

30029262896817
10175596800299

�26136350496073
3983972220547

�5289405421727
3760307252460
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ARK5(4)8L[2]SA - ERK

0 0 0 0 0 0 0 0 0

41
100

41
100 0 0 0 0 0 0 0

2935347310677

11292855782101

367902744464

2072280473677

677623207551

8224143866563 0 0 0 0 0 0

1426016391358

7196633302097

1268023523408

10340822734521 0

1029933939417

13636558850479 0 0 0 0 0

92
100

14463281900351

6315353703477 0

66114435211212

5879490589093

�54053170152839

4284798021562 0 0 0 0

24
100

14090043504691

34967701212078 0

15191511035443

11219624916014

�18461159152457

12425892160975

�281667163811

9011619295870 0 0 0

3
5

19230459214898

13134317526959 0

21275331358303

2942455364971

�38145345988419

4862620318723

�1
8

�1
8 0 0

1

�19977161125411

11928030595625

0

�40795976796054

6384907823539

177454434618887

12078138498510

782672205425

8267701900261

�69563011059811

9646580694205

7356628210526

4942186776405

0

bi

�872700587467

9133579230613 0 0

22348218063261

9555858737531

�1143369518992

8141816002931

�39379526789629

19018526304540

32727382324388

42900044865799

41
200

^bi

�975461918565

9796059967033 0 0

78070527104295

32432590147079

�548382580838

3424219808633

�33438840321285

15594753105479

3629800801594

4656183773603

4035322873751

18575991585200

ARK5(4)8L[2]SA - ESDIRK

0 0 0 0 0 0 0 0 0

41
100

41
200

41
200 0 0 0 0 0 0
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